Chapter 4: Problem 72
Assertion \((A):\) If \(y=\tan ^{-1}(\cot x)+\cot ^{-1}(\tan x), \pi / 2
Chapter 4: Problem 72
Assertion \((A):\) If \(y=\tan ^{-1}(\cot x)+\cot ^{-1}(\tan x), \pi / 2
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{f}(\mathrm{x})=\frac{1-\mathrm{x}^{\mathrm{n}+1}}{1-\mathrm{x}}\) and \(\mathrm{g}(\mathrm{x})=1+\frac{2}{\mathrm{x}}+\frac{3}{\mathrm{x}^{2}}-\ldots\) \(\ldots . .+(-1)^{n} \frac{n+1}{x^{n}} .\) Then the constant term in \(f^{\prime}(x) \times g(x)\) is equal to (A) \(\frac{\mathrm{n}\left(\mathrm{n}^{2}-1\right)}{6}\) when \(\mathrm{n}\) is even (B) \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\) when \(\mathrm{n}\) is odd (C) \(-\frac{\mathrm{n}}{2}(\mathrm{n}+1)\) when \(\mathrm{n}\) is even (D) \(\frac{\mathrm{n}(\mathrm{n}-1)}{2}\) when \(\mathrm{n}\) is odd
$\begin{aligned} &f(x)=\sqrt{1-\sin 2 x}=\sin x-\cos x \mid \\ &\text { For } x \in(0, \pi / 4) \\ &f(x)=\cos x-\sin x \\ &f^{\prime}(x)=-(\sin x+\cos x) \\ &\text { For } x \in(\pi / 4, \pi / 2) \\ &f(x)=\sin x-\cos x \\ &f^{\prime}(x)=\cos x+\sin x \end{aligned}$
The value of $\frac{\mathrm{f}(\mathrm{t})}{\mathrm{f}^{\prime}(\mathrm{t})} \cdot \frac{\mathrm{f}^{\prime \prime}(-\mathrm{t})}{\mathrm{f}^{\prime}(-\mathrm{t})}+\frac{\mathrm{f}(-\mathrm{t})}{\mathrm{f}^{\prime}(-\mathrm{t})} \cdot \frac{\mathrm{f}^{\prime \prime}(\mathrm{t})}{\mathrm{f}^{\prime}(\mathrm{t})}$ \(\forall \mathrm{t} \in \mathrm{R}\), is equal to (A) \(-2\) (B) 2 (C) \(-4\) (D) 4
$\begin{aligned} &f(x)=\frac{a+\sqrt{a^{2}-x^{2}}+x}{a+\sqrt{a^{2}-x^{2}}-x}=1+\frac{2 x}{a+\sqrt{a^{2}-x^{2}}-x} \\ &\text { Put } x=a \sin \theta \\ &\Rightarrow \frac{d x}{d \theta}=a \cos \theta \\ &y=f(x)=1+\frac{2 \sin \theta}{1+\cos \theta-\sin \theta} \\ &\frac{d y}{d \theta}=\frac{(1+\cos \theta-\sin \theta) 2 \cos \theta}{(1+\cos \theta-\sin \theta)^{2}}+2 \sin \theta(\sin \theta+\cos \theta) \\ &=\frac{2 \cos \theta+2}{(1+\cos \theta-\sin 0)^{2}} \\ &\frac{d y}{d x}=\frac{2(1+\cos \theta)}{(1+\cos \theta-\sin \theta)^{2}} \times \frac{1}{a \cos \theta} \\ &\text { At } x=0, \theta=0 \\ &\frac{d y}{d x}=\frac{1}{a} \end{aligned}$
\(f(x)=\frac{x}{1+e^{1 / x}}\) \(f(x)\left(1+e^{1 / x}\right)-x=0\) \(f^{\prime}(x)\left(1+e^{1 / x}\right)-\frac{f(x) e^{l / x}}{x^{2}}-1=0\) \(x^{2} f^{\prime}(x) \frac{(x)}{f(x)}-f(x) e^{1 / x}-x^{2}=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.