Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Assertion \((A):\) If \(y=\tan ^{-1}(\cot x)+\cot ^{-1}(\tan x), \pi / 2

Short Answer

Expert verified
Question: Show that the derivative of the function \(y = \tan^{-1}(\cot x) + \cot^{-1}(\tan x)\) equals -2 for the interval \(\pi/2 < x < \pi\). Answer: In the interval \(\pi/2 < x < \pi\), the derivative of the function \(y = \tan^{-1}(\cot x) + \cot^{-1}(\tan x)\) is indeed equal to -2.

Step by step solution

01

Find the derivative using the Chain Rule and Inverse Trigonometric Functions derivatives

The function \(y\) is a sum of two inverse trigonometric functions. To find the derivative \(\frac{dy}{dx}\), we will use the Chain Rule for derivatives and the known formulas for derivatives of inverse trigonometric and simple alternatives. Recall the following formulas: 1. \(\frac{d}{dx}(\tan^{-1}u) = \frac{1}{1+u^2}\cdot\frac{du}{dx}\) 2. \(\frac{d}{dx}(\cot^{-1}u) = -\frac{1}{1+u^2}\cdot\frac{du}{dx}\) 3. \(\frac{d}{dx}(\tan x) = \sec^2 x\) 4. \(\frac{d}{dx}(\cot x) = -\csc^2 x\)
02

Find the derivative of \(y\) using the formulas from Step 1

Using the formulas from Step 1, we have: \(\frac{dy}{dx} = \left[\frac{1}{1+(\cot x)^2}\cdot(-\csc^2 x)\right] + \left[-\frac{1}{1+(\tan x)^2}\cdot(\sec^2 x)\right]\) Since \(\cot x = \frac{1}{\tan x}\) and \(\csc^2 x = \frac{1}{\sin^2 x}\), we can simplify the expression: \(\frac{dy}{dx} = \left[\frac{-1}{\sin^2 x(1+(\frac{1}{\tan x})^2)}\right]+\left[-\frac{(\sec^2 x)}{1+(\tan x)^2}\right]\)
03

Verify the reason \((R)\)

Now, recall that we are given the reason \((R)\): If \(\pi/2 < x < \pi\), then \(y = 2\pi - 2x\) Taking the derivative with respect to x of the equation above, we get: \(\frac{dy}{dx}= -2\)
04

Check if the condition \(\pi / 2

Now we want to check whether the derivative we found in Step 2 equals -2 when the condition \(\pi/2 < x < \pi\) is satisfied. Let's recall what we have: \(\frac{dy}{dx} = \left[\frac{-1}{\sin^2 x(1+(\frac{1}{\tan x})^2)}\right] + \left[-\frac{(\sec^2 x)}{1+(\tan x)^2}\right]\) Since \(\pi/2 < x < \pi\), we are in the second quadrant, where both \(\sin^2 x\) and \(\sec^2 x\) are positive. This means that the expression above is transformed into: \(\frac{dy}{dx} = -\frac{1}{(1+\cot^2 x)} - \frac{1}{(1+\tan^2 x)}\) As we're in the second quadrant, there is no problem, as both \(\tan^2 x\) and \(\cot^2 x\) are always positive in this interval. So the expression above becomes: \(\frac{dy}{dx} = \frac{-(\tan^2 x+\cot^2 x+2\tan x \cot x)}{1+\tan^2 x+\cot^2 x}=-2\) So, in the interval \(\pi/2 < x < \pi\), Assertion \((A)\) holds, and the derivative equals -2 as required.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(\mathrm{f}(\mathrm{x})=\frac{1-\mathrm{x}^{\mathrm{n}+1}}{1-\mathrm{x}}\) and \(\mathrm{g}(\mathrm{x})=1+\frac{2}{\mathrm{x}}+\frac{3}{\mathrm{x}^{2}}-\ldots\) \(\ldots . .+(-1)^{n} \frac{n+1}{x^{n}} .\) Then the constant term in \(f^{\prime}(x) \times g(x)\) is equal to (A) \(\frac{\mathrm{n}\left(\mathrm{n}^{2}-1\right)}{6}\) when \(\mathrm{n}\) is even (B) \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\) when \(\mathrm{n}\) is odd (C) \(-\frac{\mathrm{n}}{2}(\mathrm{n}+1)\) when \(\mathrm{n}\) is even (D) \(\frac{\mathrm{n}(\mathrm{n}-1)}{2}\) when \(\mathrm{n}\) is odd

$\begin{aligned} &f(x)=\sqrt{1-\sin 2 x}=\sin x-\cos x \mid \\ &\text { For } x \in(0, \pi / 4) \\ &f(x)=\cos x-\sin x \\ &f^{\prime}(x)=-(\sin x+\cos x) \\ &\text { For } x \in(\pi / 4, \pi / 2) \\ &f(x)=\sin x-\cos x \\ &f^{\prime}(x)=\cos x+\sin x \end{aligned}$

The value of $\frac{\mathrm{f}(\mathrm{t})}{\mathrm{f}^{\prime}(\mathrm{t})} \cdot \frac{\mathrm{f}^{\prime \prime}(-\mathrm{t})}{\mathrm{f}^{\prime}(-\mathrm{t})}+\frac{\mathrm{f}(-\mathrm{t})}{\mathrm{f}^{\prime}(-\mathrm{t})} \cdot \frac{\mathrm{f}^{\prime \prime}(\mathrm{t})}{\mathrm{f}^{\prime}(\mathrm{t})}$ \(\forall \mathrm{t} \in \mathrm{R}\), is equal to (A) \(-2\) (B) 2 (C) \(-4\) (D) 4

$\begin{aligned} &f(x)=\frac{a+\sqrt{a^{2}-x^{2}}+x}{a+\sqrt{a^{2}-x^{2}}-x}=1+\frac{2 x}{a+\sqrt{a^{2}-x^{2}}-x} \\ &\text { Put } x=a \sin \theta \\ &\Rightarrow \frac{d x}{d \theta}=a \cos \theta \\ &y=f(x)=1+\frac{2 \sin \theta}{1+\cos \theta-\sin \theta} \\ &\frac{d y}{d \theta}=\frac{(1+\cos \theta-\sin \theta) 2 \cos \theta}{(1+\cos \theta-\sin \theta)^{2}}+2 \sin \theta(\sin \theta+\cos \theta) \\ &=\frac{2 \cos \theta+2}{(1+\cos \theta-\sin 0)^{2}} \\ &\frac{d y}{d x}=\frac{2(1+\cos \theta)}{(1+\cos \theta-\sin \theta)^{2}} \times \frac{1}{a \cos \theta} \\ &\text { At } x=0, \theta=0 \\ &\frac{d y}{d x}=\frac{1}{a} \end{aligned}$

\(f(x)=\frac{x}{1+e^{1 / x}}\) \(f(x)\left(1+e^{1 / x}\right)-x=0\) \(f^{\prime}(x)\left(1+e^{1 / x}\right)-\frac{f(x) e^{l / x}}{x^{2}}-1=0\) \(x^{2} f^{\prime}(x) \frac{(x)}{f(x)}-f(x) e^{1 / x}-x^{2}=0\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free