Chapter 4: Problem 7
\(f(x)=\frac{x}{1+e^{1 / x}}\) \(f(x)\left(1+e^{1 / x}\right)-x=0\) \(f^{\prime}(x)\left(1+e^{1 / x}\right)-\frac{f(x) e^{l / x}}{x^{2}}-1=0\) \(x^{2} f^{\prime}(x) \frac{(x)}{f(x)}-f(x) e^{1 / x}-x^{2}=0\)
Chapter 4: Problem 7
\(f(x)=\frac{x}{1+e^{1 / x}}\) \(f(x)\left(1+e^{1 / x}\right)-x=0\) \(f^{\prime}(x)\left(1+e^{1 / x}\right)-\frac{f(x) e^{l / x}}{x^{2}}-1=0\) \(x^{2} f^{\prime}(x) \frac{(x)}{f(x)}-f(x) e^{1 / x}-x^{2}=0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{y}=\mathrm{x}^{\mathrm{x}^{2}}\) then \(\frac{\mathrm{dy}}{\mathrm{dx}}\) is equal to (A) \(2 \ln x, x^{x^{2}}\) (B) \((2 \ln x+1) \cdot x^{x^{2}}\) (C) \((2 \ln x+1) \cdot x^{x^{2}+1}\) (D) \(x^{x^{2}+1} \cdot \ln e x^{2}\)
$\begin{aligned}
&f(x)=\left|x^{2}-3\right| x|+2| \\
&f(x)= \begin{cases}x^{2}-3 x+2, & 0
Assume that \(f\) is differentiable for all \(x\). The sign of \(f^{\prime}\) is as follows: \(\mathrm{f}^{\prime}(\mathrm{x})>0\) on \((-\infty,-4)\) \(\mathrm{f}^{\prime}(\mathrm{x})<0\) on \((-4,6)\) \(\mathrm{f}^{\prime}(\mathrm{x})>0\) on \((6, \infty)\) Let \(g(x)=f(10-2 x)\). The value of \(g^{\prime}(L)\) is (A) positive (B) negative (C) zero (D) the function \(g\) is not differentiable at \(x=5\)
$\begin{aligned} &\frac{d^{2} x}{d y^{2}}\left(\frac{d y}{d x}\right)^{3}+\frac{d^{2} y}{d x^{2}}=k \\ &\text { As } \frac{d x}{d y}=\frac{1}{d y / d x} \\ &\Rightarrow \frac{d^{2} x}{d y^{2}}=\frac{-d^{2} y / d x^{2}}{(d y / d x)^{3}} \\ &\Rightarrow \frac{d^{2} x}{d y^{2}}\left(\frac{d y}{d x}\right)^{3}+\frac{d^{2} y}{d x^{2}}=0 \end{aligned}$
Assertion (A) : If a differentiable function \(f(x)\) satisfies the relation $\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{x}-2)=0 \forall \mathrm{x} \in \mathrm{R}$, and if $\left(\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{x})\right)_{\mathrm{x}=\mathrm{a}}=\mathrm{b}$, then $\left(\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{x})\right)_{\mathrm{a}+4000}=\mathrm{b}$. Reason \((\mathbf{R}): \mathrm{f}(\mathrm{x})\) is a periodic function with period 4 .
What do you think about this solution?
We value your feedback to improve our textbook solutions.