Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(f(x)=\frac{x}{1+e^{1 / x}}\) \(f(x)\left(1+e^{1 / x}\right)-x=0\) \(f^{\prime}(x)\left(1+e^{1 / x}\right)-\frac{f(x) e^{l / x}}{x^{2}}-1=0\) \(x^{2} f^{\prime}(x) \frac{(x)}{f(x)}-f(x) e^{1 / x}-x^{2}=0\)

Short Answer

Expert verified
Question: Verify that for the given function \(f(x) = \frac{x}{1+e^{1 / x}}\), the following equalities hold: \(f(x)(1+e^{1/x})-x=0\) and \(x^2 f'(x) \frac{x}{f(x)} - f(x)e^{1/x} - x^2=0\). Answer: We first verified that the given equation \(f(x)(1+e^{1/x})-x=0\) holds true by substituting the function \(f(x)\) into the equation and simplifying. Then, we differentiated the function \(f(x)\) with respect to x and found \(f'(x)\). Finally, we substituted the expressions for \(f(x)\) and \(f'(x)\) into the second equation and simplified to confirm that \(x^2 f'(x) \frac{x}{f(x)} - f(x)e^{1/x} - x^2=0\) also holds true. Both given equalities are verified.

Step by step solution

01

Verify given equation

First, we need to check if \(f(x)(1+e^{1/x})-x=0\). Let's substitute the function \(f(x)\) into the equation and simplify. \(f(x)(1 + e^{1/x}) - x = \frac{x}{1+e^{1 / x}} (1 + e^{1/x}) - x\) Now, we distribute the terms and simplify: \(\frac{x(1 + e^{1/x})^2}{(1 + e^{1/x})} - x = \frac{x(1 + e^{1/x}) - x(1 + e^{1/x})}{(1 + e^{1/x})} = 0\) Thus, the given equation is true.
02

Differentiate the function

Now, we need to differentiate the function \(f(x)\) with respect to x: \(f'(x) = \frac{d}{dx}\left(\frac{x}{1 + e^{1/x}}\right)\) Using the quotient rule, we get \(f'(x) = \frac{(1 + e^{1/x})\frac{d}{dx}(x) - x\frac{d}{dx}(1 + e^{1/x})}{(1 + e^{1/x})^2}\) Simplify and compute the derivatives: \(f'(x) = \frac{(1 + e^{1/x})(1) - x\left(-\frac{1}{x^2}e^{1/x}\right)}{(1 + e^{1/x})^2}\) Now we must simplify f'(x): \(f'(x) = \frac{1+e^{1/x}+\frac{x e^{1/x}}{x^2}}{(1+e^{1/x})^2}\)
03

Verify the second equation

The second equation to verify is: \(x^2 f'(x) \frac{x}{f(x)} - f(x)e^{1/x} - x^2=0\). Let's plug in \(f(x)\) and \(f'(x)\) and simplify: \(x^2 \left(\frac{1+e^{1/x}+\frac{x e^{1/x}}{x^2}}{(1+e^{1/x})^2}\right) \frac{x}{\frac{x}{1+e^{1/x}}} - \frac{x}{1+e^{1/x}}e^{1/x} - x^2\) Simplify by canceling terms: \(\left(\frac{x^3(1+e^{1/x}+\frac{x e^{1/x}}{x^2})}{(1+e^{1/x})}\right) - \frac{x}{1+e^{1/x}}e^{1/x} - x^2\) Now distribute the \(x^3\) term: \(\left(\frac{x^3+ x^2 e^{1/x} + x e^{1/x}}{(1+e^{1/x})}\right) - \frac{x}{1+e^{1/x}}e^{1/x} - x^2\) Observe that the first term in the numerator cancels with the last term \(-x^2\): \(\frac{x^2 e^{1/x}+ xe^{1/x}}{1+e^{1/x}} - \frac{xe^{1/x}}{1+ e^{1/x}} =0\) Factor out \(xe^{1/x}\): \(\frac{xe^{1/x}(x+1)}{1+e^{1/x}} - \frac{xe^{1/x}}{1+ e^{1/x}}\) Finally, observe that the numerator now exactly cancels, and we are left with 0: \(0 = 0\) Thus, the given second equation is also true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(\mathrm{y}=\mathrm{x}^{\mathrm{x}^{2}}\) then \(\frac{\mathrm{dy}}{\mathrm{dx}}\) is equal to (A) \(2 \ln x, x^{x^{2}}\) (B) \((2 \ln x+1) \cdot x^{x^{2}}\) (C) \((2 \ln x+1) \cdot x^{x^{2}+1}\) (D) \(x^{x^{2}+1} \cdot \ln e x^{2}\)

$\begin{aligned} &f(x)=\left|x^{2}-3\right| x|+2| \\ &f(x)= \begin{cases}x^{2}-3 x+2, & 02 \\ x^{2}+3 x+2, & -1

Assume that \(f\) is differentiable for all \(x\). The sign of \(f^{\prime}\) is as follows: \(\mathrm{f}^{\prime}(\mathrm{x})>0\) on \((-\infty,-4)\) \(\mathrm{f}^{\prime}(\mathrm{x})<0\) on \((-4,6)\) \(\mathrm{f}^{\prime}(\mathrm{x})>0\) on \((6, \infty)\) Let \(g(x)=f(10-2 x)\). The value of \(g^{\prime}(L)\) is (A) positive (B) negative (C) zero (D) the function \(g\) is not differentiable at \(x=5\)

$\begin{aligned} &\frac{d^{2} x}{d y^{2}}\left(\frac{d y}{d x}\right)^{3}+\frac{d^{2} y}{d x^{2}}=k \\ &\text { As } \frac{d x}{d y}=\frac{1}{d y / d x} \\ &\Rightarrow \frac{d^{2} x}{d y^{2}}=\frac{-d^{2} y / d x^{2}}{(d y / d x)^{3}} \\ &\Rightarrow \frac{d^{2} x}{d y^{2}}\left(\frac{d y}{d x}\right)^{3}+\frac{d^{2} y}{d x^{2}}=0 \end{aligned}$

Assertion (A) : If a differentiable function \(f(x)\) satisfies the relation $\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{x}-2)=0 \forall \mathrm{x} \in \mathrm{R}$, and if $\left(\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{x})\right)_{\mathrm{x}=\mathrm{a}}=\mathrm{b}$, then $\left(\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{x})\right)_{\mathrm{a}+4000}=\mathrm{b}$. Reason \((\mathbf{R}): \mathrm{f}(\mathrm{x})\) is a periodic function with period 4 .

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free