Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

$\begin{aligned} &\mathrm{y}=\sqrt{3+2[\sin x \sin 2 \mathrm{x}+\sin x \sin 3 x+\sin 2 x \sin 3 x}\\\ &+\cos x \cos 2 x+\cos x \cos 3 x+\cos 2 x \cos 3 x]\\\ &=\sqrt{3+2[\cos x+\cos 2 x+\cos x]}\\\ &=\sqrt{3+4 \cos x+4 \cos ^{2} x-2}\\\ &=\sqrt{4 \cos ^{2} x+4 \cos x+1}\\\ &y=|2 \cos x+1|\\\ &\text { At } x=\frac{\pi}{2}\\\ &y=2 \cos x+1\\\ &y^{\prime}=-2 \sin x\\\ &\mathrm{y}^{\prime}=-2 \end{aligned}$ $\begin{aligned} &\text { At } x=\pi / 5 \\ &y=2 \cos x+1 \\ &y^{\prime}=-2 \sin x \\ &y^{\prime}=-2 \sin \pi / 5=\frac{\sqrt{5}+3}{2} \end{aligned}$

Short Answer

Expert verified
Question: Find the derivative y' of the function \(y = |2 \cos x + 1|\) and evaluate y' at \(x = \frac{\pi}{2}\) and \(x = \frac{\pi}{5}\). Answer: The derivative of y with respect to x is \(y' = -2 \sin x\). When \(x = \frac{\pi}{2}\), \(y' = -2\), and when \(x = \frac{\pi}{5}\), \(y' = -2 \sin \frac{\pi}{5} = \frac{\sqrt{5} + 3}{2}\).

Step by step solution

01

Simplify the expression for y

Notice the given expression inside the square root can be rearranged as sum of products of trigonometric terms. Use the product-to-sum identities: \(\sin a \sin b = \frac{1}{2}(\cos(a - b) - \cos(a + b))\) and \(\cos a \cos b = \frac{1}{2}(\cos(a - b) + \cos(a + b))\) to simplify the expression: $\begin{aligned} y &= \sqrt{3+2[\sin x \sin 2x+\sin x \sin 3x+\sin 2x \sin 3x + \cos x \cos 2x+\cos x \cos 3x+\cos 2x \cos 3x]} \\ &= \sqrt{3+2[\frac{1}{2}(\cos x - \cos 3x)+\frac{1}{2}(\cos 2x - \cos 4x)+\frac{1}{2}(\cos x + \cos 5x) + \frac{1}{2}(\cos x + \cos 3x)+\frac{1}{2}(\cos 2x + \cos 4x)+\frac{1}{2}(\cos x - \cos 5x)]} \\ \end{aligned}$
02

Combine terms inside the square root and simplify further

Combine the terms inside the square root and cancel out any opposing terms: \(y=\sqrt{3+2[\frac{1}{2}(\cos x- \cos 3x+\cos 2x -\cos 4x+\cos x+\cos 5x +\cos x+\cos 3x+\cos 2x+\cos 4x+\cos x-\cos 5x)]}\) \(= \sqrt{3+2[2 \cos x+2 \cos 2x]}\)
03

Simplify the square root

Finish simplifying the square root: \(y=\sqrt{3+4[\cos x+\cos 2x]}\) \(=\sqrt{4 \cos^2 x+4 \cos x +1}\) \(=|2 \cos x+1|\)
04

Find the derivative of y with respect to x

Differentiate y with respect to x using the chain rule for the absolute value function and the derivative of the cosine function: \(y'=-2 \sin x\)
05

Evaluate y' at x = pi/2

Evaluate y' at \(x=\frac{\pi}{2}\): \(y'(-2\sin\frac{\pi}{2})=-2\)
06

Evaluate y' at x = pi/5

Evaluate y' at \(x=\frac{\pi}{5}\): \(y'(-2\sin\frac{\pi}{5})=-2 \sin \frac{\pi}{5}=\frac{\sqrt{5}+3}{2}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

$\begin{aligned} &\text { A) } \begin{array}{l} y^{2}+4=\left(\sec ^{n} \theta+\cos ^{n} \theta\right)^{2} \quad \ \\ x^{2}+4=(\sec \theta+\cos \theta)^{2} \\ \frac{d x}{d \theta}=\sec \theta \tan \theta+\sin \theta \\ \frac{d y}{d \theta}=n \sec ^{n-1} \theta \sec \theta \tan \theta+n \cos ^{n-1} \theta \sin \theta \\ \left(\frac{d y}{d x}\right)^{2}=\frac{n^{2}\left(\sec ^{n} \theta \tan \theta+\cos ^{n} \theta \tan \theta\right)^{2}}{\tan ^{2} \theta(\sec \theta+\cos \theta)^{2}} \\ =\frac{n^{2}\left(y^{2}+4\right)}{x^{2}+4} \end{array} \end{aligned}$ $\begin{aligned} &\text { B) }\\\ &\text { Put } t=\tan \theta\\\ &x=0, \quad y=0\\\ &\frac{\mathrm{d} \mathrm{x}}{\mathrm{d} \theta}=1 \quad \frac{\mathrm{dy}}{\mathrm{d} \theta}=1\\\ &\Rightarrow \frac{d y}{d x}=1 \end{aligned}$ $\begin{aligned} &\text { C) }\\\ &\mathrm{e}^{y}+x y=e\\\ &\begin{aligned} &\mathrm{e}^{y} \mathrm{y}^{\prime}+\mathrm{xy}^{\prime}+\mathrm{y}=0 \\ &\mathrm{e}^{\mathrm{y}} \mathrm{y}^{\prime \prime}+\mathrm{e}^{y}\left(\mathrm{y}^{\prime}\right)^{2}+\mathrm{y}^{\prime}+\mathrm{xy}^{\prime \prime}+\mathrm{y}^{\prime}=0 \end{aligned} \end{aligned}$ $\begin{aligned} &\text { For } x=0, y=1 \\ &y^{\prime \prime}=\frac{-\left(e\left(y^{\prime}\right)^{2}+2 y^{\prime}\right)}{e} \\ &=\frac{-1}{e}\left(\frac{1}{e}-\frac{2}{e}\right)=\frac{1}{e^{2}} \end{aligned}$ $\begin{aligned} &\text { D) } \phi(x)=f(x) g(x) \\ &\phi^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\ &\phi^{\prime \prime}(x)=f^{\prime \prime}(x) g(x)+2 f^{\prime}(x) g^{\prime}(x)+f(x) g^{\prime}(x) \\ &\frac{\phi^{\prime \prime}(x)}{\phi(x)}=\frac{f^{\prime \prime}(x)}{f(x)}+\frac{g^{\prime \prime}(x)}{g(x)}+\frac{2 f^{\prime}(x)}{f(x)} \frac{g^{\prime}(x)}{g(x)} \end{aligned}$

Assume that \(f\) is differentiable for all \(x\). The sign of \(f^{\prime}\) is as follows: \(\mathrm{f}^{\prime}(\mathrm{x})>0\) on \((-\infty,-4)\) \(\mathrm{f}^{\prime}(\mathrm{x})<0\) on \((-4,6)\) \(\mathrm{f}^{\prime}(\mathrm{x})>0\) on \((6, \infty)\) Let \(g(x)=f(10-2 x)\). The value of \(g^{\prime}(L)\) is (A) positive (B) negative (C) zero (D) the function \(g\) is not differentiable at \(x=5\)

As $\mathrm{f}(\mathrm{x}), \mathrm{f}^{\prime}(\mathrm{x}), \mathrm{f}^{\prime \prime}(\mathrm{x})\( are all \)+\mathrm{ve} \forall \mathrm{x} \in[0,7]$ \(\Rightarrow \mathrm{f}(\mathrm{x})\) is increasing function and concave up. and so is \(\mathrm{f}^{-1}(\mathrm{x})\). $\Rightarrow f^{-1}(5)+4 f^{-1}\left(\frac{2 g}{5}\right)\( is always \)+v e$.

\(y=f^{-1}(x)\) As $g^{\prime \prime}(y)=-\frac{f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{3}}=-\frac{4}{8}=-\frac{1}{2}$

If \((x-c)^{2}+(y-a)^{2}=b^{2}\), then $\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}{\frac{d^{2} y}{d x^{2}}}$ is independent of (A) \(\mathrm{b}\) (B) a (C) \(\mathrm{c}\) at \(\mathrm{x}=0\) (D) None of these

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free