Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

$\begin{aligned} &\text { A) } x e^{x y} \mp y+\sin ^{2} x\\\ &\text { At } x=0, \quad y=0\\\ &\text { Differentiating wrt } \mathrm{x} \text {, }\\\ &\mathrm{e}^{\mathrm{xy}}+\mathrm{xe}^{\mathrm{xy}}\left(\mathrm{y}+\mathrm{xy}^{\prime}\right)=\mathrm{y}^{\prime}+\sin 2 \mathrm{x} \end{aligned}$ At \(x=0\) \(\quad \Rightarrow 1=y^{\prime}\) B) Conceptual C) Conceptual D) $\begin{aligned} y &=\sin ^{-1} \cos \sin ^{-1} x+\cos ^{-1} \sin \cos ^{-1} x \\ &=\sin ^{-1} \sqrt{1-x^{2}}+\cos ^{-1} \sqrt{1-x^{2}} \\\ &=\frac{\pi}{2} \end{aligned}$

Short Answer

Expert verified
Based on the step-by-step solution provided, create a short answer below. Given the function \(A) x e^{xy} \mp y+\sin^2 x\) and the point \((x, y) = (0, 0)\), we used the chain rule, product rule, and trigonometric formulae to differentiate the function with respect to x. After finding the first derivative, we plugged in the given point to evaluate it, obtaining the value of the first derivative at \((0, 0)\) as \(1\).

Step by step solution

01

Understand the given function and point

We are given the function \(A) x e^{xy} \mp y+\sin^2 x\) and a point \((x, y) = (0, 0)\). Our goal is to find the first derivative \(\frac{dy}{dx}\) at this point.
02

Differentiate the function with respect to x

Using the chain rule and product rule, we differentiate the function with respect to x as follows: \(\frac{dy}{dx}=\frac{d}{dx}(xe^{xy} \mp y+\sin^2 x)\) Using the product rule for the first term: \(\frac{d}{dx}(xe^{xy}) = e^{xy} + x(\frac{d}{dx}(e^{xy}))\) The chain rule is then applied to find \(\frac{d}{dx}(e^{xy})\): \(\frac{d}{dx}(e^{xy}) = e^{xy}(\frac{d}{dx}(xy)) = e^{xy}(y + x\frac{dy}{dx})\) Now, differentiate the rest of the function terms: \(\frac{d}{dx}(\mp y) = \mp \frac{dy}{dx}\) \(\frac{d}{dx}(\sin^2 x) = 2\sin x \cos x\) Therefore, combining all terms, we get: \(\frac{dy}{dx} = e^{xy} + x(y + x\frac{dy}{dx})e^{xy} \mp \frac{dy}{dx} + 2\sin x \cos x\)
03

Evaluate the first derivative at the given point

Now, we plug in the point \((x, y) = (0, 0)\) into the derivative: \(\frac{dy}{dx}(0,0) = e^{(0)(0)} + (0)(0 + (0)\frac{dy}{dx}(0,0))e^{(0)(0)} \mp \frac{dy}{dx}(0,0) + 2\sin(0) \cos (0)\) Simplify the terms: \(\frac{dy}{dx}(0,0) = 1 \mp \frac{dy}{dx}(0,0)\) Now, solve for \(\frac{dy}{dx}(0,0)\): \(\frac{dy}{dx}(0,0) = 1\) So, the value of the first derivative at the point \((0, 0)\) is \(1\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

$\lim _{x \rightarrow 1} \frac{n x^{n+1}-(n+1) x^{n}+1}{\left(e^{x}-e\right) \sin \pi x}$ $\lim _{h \rightarrow 0} \frac{n(1+h)^{n+1}-(n+1)(1+h)^{n}+1}{-e\left(e^{h}-1\right) \sin \pi h}$ $\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{n}(1+\mathrm{h})^{\mathrm{n}+1}-(\mathrm{n}+1)(1+\mathrm{h})^{\mathrm{n}}+1}{-\pi \mathrm{t} \mathrm{h}^{2}}$ $\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{n}(\mathrm{n}+1)(1+\mathrm{h})^{\mathrm{n}}-\mathrm{n}(\mathrm{n}+1)(1+\mathrm{h})^{\mathrm{n}-1}}{-2 \pi \mathrm{t} h}$ $\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n})(1+\mathrm{h})^{\mathrm{n}-1}-\mathrm{n}(\mathrm{n}+1)(1+\mathrm{h})^{\mathrm{n}-2}(\mathrm{n}-1)}{-2 \pi \mathrm{e}}$ $=\frac{\mathrm{n}^{2}(\mathrm{n}+1)-\mathrm{n}(\mathrm{n}-1)}{-2 \pi \mathrm{e}}(\mathrm{n}+1)=\frac{\mathrm{n}(\mathrm{n}+1)}{-2 \pi \mathrm{e}}$ Put \(\mathrm{n}=100\) \(=\frac{-5050}{\pi \mathrm{e}}\)

\((f(x))^{n}=f(n x)\) Differentiating it \((f(x))^{n-1} f^{\prime}(x)=f^{\prime}(n x)\) Multiply by \(f(x)\) $\mathrm{f}(\mathrm{nx}) \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{nx}) \mathrm{f}(\mathrm{x})$

If for some differentiable function \(\mathrm{f}, \mathrm{f}(\alpha)=0\) and \(\mathrm{f}^{\prime}(\alpha)=0\). Assertion (A) : The sign of \(\mathrm{f}(\mathrm{x})\) does not change in the neighbourhood of \(\mathrm{x}=\alpha\). Reason \((\mathbf{R}): \alpha\) is repeated root of \(\mathrm{f}(\mathrm{x})=0\)

The value of \(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}\) at the point where \(\mathrm{f}(\mathrm{t})=\mathrm{g}(\mathrm{t})\) is (A) 0 (B) \(\frac{1}{2}\) (C) 1 (D) 2

\(f(x)=\ln \sin x\) \(f^{\prime}(x)=\frac{1}{\ln \sin x} \times \frac{1}{\sin x} \times \cos x\) \(f^{\prime}\left(\frac{\pi}{6}\right)=\frac{-1}{\ln 2} \times \sqrt{3}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free