Chapter 4: Problem 54
$\begin{aligned}
&f(x)=\left|x^{2}-3\right| x|+2| \\
&f(x)= \begin{cases}x^{2}-3 x+2, & 0
Chapter 4: Problem 54
$\begin{aligned}
&f(x)=\left|x^{2}-3\right| x|+2| \\
&f(x)= \begin{cases}x^{2}-3 x+2, & 0
All the tools & learning materials you need for study success - in one app.
Get started for free\(y=\tan ^{-1}\left(\frac{2^{x}}{1+2^{x} \cdot 2}\right)\) $y^{\prime}=\frac{1}{1+\left(\frac{2^{x}}{1+2^{x+1}}\right)^{2}} \times \frac{\left(1+2^{x+1}\right) 2^{x} \ln 2-2^{x}}{\left(1+2^{x+1}\right)^{2}} 2^{x+1} \ln 2$ $y_{\text {at } x=0}^{\prime}=\frac{9}{10} \times \frac{\ln 2}{9}=\frac{\ln 2}{10}$
If for some differentiable function \(\mathrm{f}, \mathrm{f}(\alpha)=0\) and \(\mathrm{f}^{\prime}(\alpha)=0\). Assertion (A) : The sign of \(\mathrm{f}(\mathrm{x})\) does not change in the neighbourhood of \(\mathrm{x}=\alpha\). Reason \((\mathbf{R}): \alpha\) is repeated root of \(\mathrm{f}(\mathrm{x})=0\)
Column-I
(A) If \(|g(x)-g(y)| \leq|x-y|^{99},(n \in N)\) then \(g^{\prime}(x)\) equals
(B) Differential coefficient of $\sin ^{-1} \frac{2
\mathrm{x}}{1+\mathrm{x}^{2}}\( with respect to \)\cos ^{-1}
\frac{1-x^{2}}{1+x^{2}}\( in the domain of \)f(x)=\frac{1}{\sqrt{1-x^{2}}}$ is
(C) If \(y=\cot ^{-1}(\tan x)+\tan ^{-1}(\cot x), \pi / 2
\(y=a t^{2}+2 b t+c, \quad t=a x^{2}+2 b x+c\) \(y=a\left(a x^{2}+2 b x+c\right)^{2}+2 b\left(a x^{2}+2 b x+c\right)+c\) \(y^{\prime}=2 a\left(a x^{2}+2 b x+c\right)(2 a x+2 b)+2 b(2 a x+2 b)\) $y^{\prime \prime}=4 a^{2}\left(a x^{2}+2 b x+c\right)+2 a(2 a x+2 b)^{2}+4 a b$ \(y^{\prime \prime \prime}=4 a^{2}(2 a x+2 b)+4 a(2 a x+2 b)(2 a)\) \(\quad=(2 a x+2 b)\left(12 a^{2}\right)\) \(=24 a^{2}(a x+b)\)
\(f(x)=x^{2} \ln g(x)\) \(f^{\prime}(x)=2 x \ln g(x)+\frac{x^{2} g^{\prime}(x)}{g(x)}\) \(f^{\prime}(2)=4 \ln 3-\frac{16}{3}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.