Chapter 4: Problem 5
\(f\left(x^{2}\right)=x^{4}+x^{3}+1\) Put \(x=x^{2}\) \(f\left(x^{4}\right)=x^{8}+x^{6}+1\) \(f^{\prime}\left(x^{4}\right)=\frac{8 x^{7}+6 x^{5}}{4 x^{3}}\) \(=2 x^{4}+\frac{3}{2} x^{2}\)
Chapter 4: Problem 5
\(f\left(x^{2}\right)=x^{4}+x^{3}+1\) Put \(x=x^{2}\) \(f\left(x^{4}\right)=x^{8}+x^{6}+1\) \(f^{\prime}\left(x^{4}\right)=\frac{8 x^{7}+6 x^{5}}{4 x^{3}}\) \(=2 x^{4}+\frac{3}{2} x^{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \((x-c)^{2}+(y-a)^{2}=b^{2}\), then $\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}{\frac{d^{2} y}{d x^{2}}}$ is independent of (A) \(\mathrm{b}\) (B) a (C) \(\mathrm{c}\) at \(\mathrm{x}=0\) (D) None of these
\(y=|\cos x|+|\sin x|\) \(y=\sin x-\cos x\) is the neighbourhood of \(x=\frac{2 \pi}{3}\) \(y^{\prime}=\cos x+\sin x\) \(y^{\prime}=\frac{-1}{2}+\frac{\sqrt{3}}{2}\)
$\begin{aligned} &f(x)=\left|\begin{array}{lll} \cos x & \sin x & \cos x \\ \cos 2 x & \sin 2 x & 2 \cos 2 x \\ \cos 3 x & \sin 3 x & 2 \cos 3 x \end{array}\right| \\ &f^{\prime}\left(\frac{\pi}{2}\right)=\left|\begin{array}{ccc} -1 & 1 & 0 \\ 0 & 0 & -2 \\ +3 & -1 & 0 \end{array}\right| \\ &+\left|\begin{array}{ccc} 0 & 0 & 0 \\ -1 & -2 & -2 \\ 0 & 0 & 0 \end{array}\right|+\left|\begin{array}{rrr} 0 & 1 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 6 \end{array}\right| \\ &=1 \end{aligned}$
\(f(x)=e^{a x}+e^{b x}\) \(f^{\prime}(x)=a e^{a x}+b e^{b x}\) \(f^{\prime \prime}(x)=a^{2} e^{a x}+b^{2} e^{b x}\) Now \(f^{\prime \prime}(x)-2 f^{\prime}(x)-15 f(x)=0\) $\Rightarrow\left(a^{2}-2 a-15\right) e^{a x}+\left(b^{2}-2 b-15\right) e^{b x}=0$ \(\Rightarrow a^{2}-2 a-15=0 \quad \& \quad b^{2}-2 b-15=0\) a, bare two roots of \(x^{2}-2 x-15=0\) \(\mathrm{ab}=-15\)
Column-I (A) Suppose that the functions \(\mathrm{F}(\mathrm{x})\) and \(\mathrm{G}(\mathrm{x})\) satisfy the following properties $\mathrm{F}(3)=2, \mathrm{G}(3)=4, \mathrm{G}(0)=3\( \)F^{\prime}(3)=-1, G^{\prime}(3)=0 ; G^{\prime}(0)=2$ If \(\mathrm{T}(\mathrm{x})=\mathrm{F}(\mathrm{G}(\mathrm{x}))\) and \(\mathrm{U}(\mathrm{x})=\ln (\mathrm{F}(\mathrm{x}))\), then \(\mathrm{T}^{\prime}(0)+6 \mathrm{U}^{\prime}(3)\) has the value equal to (B) \(\lim _{x \rightarrow-\infty}\left(x+\sqrt{x^{2}+2 x}\right)\) (C) If \(\mathrm{y}=\mathrm{t}^{2}\) at \(\mathrm{x}=\mathrm{t}+\mathrm{t}^{2}\), then \(\frac{1}{2} \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}\) at \(\mathrm{t}=-1\) is (D) If \(\mathrm{f}(\mathrm{x})=\mathrm{x}+\mathrm{x}^{\mathrm{n}}\), a value of \(\mathrm{n}\) for which \(\mathrm{f}(\mathrm{x})\) is invertible for all \(\mathrm{x} \in \mathrm{R}\), is Column-II (P) \(-1\) (Q) \(3 \sqrt{2}\) (R) 2 (S) 3 (T) \(-5\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.