Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\((f(x))^{n}=f(n x)\) Differentiating it \((f(x))^{n-1} f^{\prime}(x)=f^{\prime}(n x)\) Multiply by \(f(x)\) $\mathrm{f}(\mathrm{nx}) \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{nx}) \mathrm{f}(\mathrm{x})$

Short Answer

Expert verified
Answer: The relationship between \(f'(x)\) and \(f'(nx)\) is given by the equation \(f(nx) f'(x) = f'(nx) f(x)\).

Step by step solution

01

Apply the Chain Rule to differentiate \((f(x))^n = f(nx)\)

To find the derivative, we will use the Chain Rule, which states that if \(h(x)=g(f(x))\), then \(h'(x)=g'(f(x)) \cdot f'(x)\). Applying this to our given function, we have, \(h(x) = (f(x))^n\), \(g(x) = x^n\), and \(f(x) = f(x)\). So, \(g'(x) = n x^{n-1}\), and the Chain Rule tells us that \(h'(x) = nx^{n-1} f'(x)\).
02

Substitute back the value of \(h(x)\) and \(g(x)\)

We will replace the value of \(h(x)\) and \(g(x)\) in the equation we obtained in step 1: \(nx^{n-1} f'(x) = f'(nx)\). Now we have: \((f(x))^{n-1} f'(x) = f'(nx)\), which is already given in the problem.
03

Multiply both sides of the equation by \(f(x)\)

Multiply both sides of the equation by \(f(x)\) to obtain the relationship between \(f'(x)\) and \(f'(nx)\). \(f(x)(f(x))^{n-1} f'(x) = f'(nx) f(x)\) This simplifies to: \((f(x))^n f'(x) = f'(nx) f(x)\)
04

Substitute back the original equation \((f(x))^n = f(nx)\)

Recall that \((f(x))^n = f(nx)\). Now, replace \((f(x))^n\) with \(f(nx)\) in the equation obtained in step 3: \(f(nx) f'(x) = f'(nx) f(x)\) This is the required relationship between \(f'(x)\) and \(f'(nx)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(f(x)=x^{2} \ln g(x)\) \(f^{\prime}(x)=2 x \ln g(x)+\frac{x^{2} g^{\prime}(x)}{g(x)}\) \(f^{\prime}(2)=4 \ln 3-\frac{16}{3}\)

\(x=a \cos t+\frac{b}{2} \cos 2 t, \quad y=a \sin t+\frac{b}{2} \sin 2 t\) $\frac{d x}{d t}=-a \sin t-b \sin 2 t, \quad \frac{d y}{d t}=a \cos t+b \cos 2 t$ \(\frac{d y}{d x}=\frac{-(a \cos t+b \cos 2 t)}{a \sin t+b \sin 2 t}\) $\frac{d^{2} y}{d x^{2}}=\left[\begin{array}{l}\frac{(a \sin t+b \sin 2 t)(+a \sin t+2 b \sin 2 t)}{(a \sin t+b \sin 2 t)^{2}} \\ +(a \cos t+b \cos 2 t)(a \cos t+2 b \cos 2 t)\end{array}\right] \times \frac{1}{-(a \sin t+b \sin 2 t)}$ For \(\frac{d^{2} y}{d x^{2}}=0\) \((a \sin t+b \sin 2 t)(a \sin t+2 b \sin 2 t)+(a \cos t+b \cos 2 t)\) \((a \cos t+2 b \cos 2 t)=0\) \(\Rightarrow a^{2}+2 b^{2}+a b \cos t+2 a b \cos t=0\) \(\Rightarrow \cos t=\frac{-\left(a^{2}+2 b^{2}\right)}{3 a b}\)

\(y=f^{-1}(x)\) As $g^{\prime \prime}(y)=-\frac{f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{3}}=-\frac{4}{8}=-\frac{1}{2}$

$\begin{aligned} &\frac{d^{2} x}{d y^{2}}\left(\frac{d y}{d x}\right)^{3}+\frac{d^{2} y}{d x^{2}}=k \\ &\text { As } \frac{d x}{d y}=\frac{1}{d y / d x} \\ &\Rightarrow \frac{d^{2} x}{d y^{2}}=\frac{-d^{2} y / d x^{2}}{(d y / d x)^{3}} \\ &\Rightarrow \frac{d^{2} x}{d y^{2}}\left(\frac{d y}{d x}\right)^{3}+\frac{d^{2} y}{d x^{2}}=0 \end{aligned}$

Assertion \((\mathbf{A}):\) Let \(g(x)=f(x) \sin x\), where \(f(x)\) is a twice differentiable function on \((-\infty, \infty)\) such that \(\mathrm{f}^{\prime}(-\pi)=1\). The value of \(g^{\prime \prime}(-\pi)\) equals \(-2\). Reason \((\mathbf{R}):\) We have $g^{\prime \prime}(x)=f(x)(-\sin x)+f^{\prime}(x) \cos x+\( \)\mathrm{f}^{\prime}(\mathrm{x}) \cos x+\mathrm{f}^{\prime \prime}(\mathrm{x}) \sin \mathrm{x}$. Hence \(\mathrm{g}^{\prime \prime}(-\pi)=-2\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free