Chapter 4: Problem 48
\((f(x))^{n}=f(n x)\) Differentiating it \((f(x))^{n-1} f^{\prime}(x)=f^{\prime}(n x)\) Multiply by \(f(x)\) $\mathrm{f}(\mathrm{nx}) \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{nx}) \mathrm{f}(\mathrm{x})$
Chapter 4: Problem 48
\((f(x))^{n}=f(n x)\) Differentiating it \((f(x))^{n-1} f^{\prime}(x)=f^{\prime}(n x)\) Multiply by \(f(x)\) $\mathrm{f}(\mathrm{nx}) \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{nx}) \mathrm{f}(\mathrm{x})$
All the tools & learning materials you need for study success - in one app.
Get started for free\(f(x)=x^{2} \ln g(x)\) \(f^{\prime}(x)=2 x \ln g(x)+\frac{x^{2} g^{\prime}(x)}{g(x)}\) \(f^{\prime}(2)=4 \ln 3-\frac{16}{3}\)
\(x=a \cos t+\frac{b}{2} \cos 2 t, \quad y=a \sin t+\frac{b}{2} \sin 2 t\) $\frac{d x}{d t}=-a \sin t-b \sin 2 t, \quad \frac{d y}{d t}=a \cos t+b \cos 2 t$ \(\frac{d y}{d x}=\frac{-(a \cos t+b \cos 2 t)}{a \sin t+b \sin 2 t}\) $\frac{d^{2} y}{d x^{2}}=\left[\begin{array}{l}\frac{(a \sin t+b \sin 2 t)(+a \sin t+2 b \sin 2 t)}{(a \sin t+b \sin 2 t)^{2}} \\ +(a \cos t+b \cos 2 t)(a \cos t+2 b \cos 2 t)\end{array}\right] \times \frac{1}{-(a \sin t+b \sin 2 t)}$ For \(\frac{d^{2} y}{d x^{2}}=0\) \((a \sin t+b \sin 2 t)(a \sin t+2 b \sin 2 t)+(a \cos t+b \cos 2 t)\) \((a \cos t+2 b \cos 2 t)=0\) \(\Rightarrow a^{2}+2 b^{2}+a b \cos t+2 a b \cos t=0\) \(\Rightarrow \cos t=\frac{-\left(a^{2}+2 b^{2}\right)}{3 a b}\)
\(y=f^{-1}(x)\) As $g^{\prime \prime}(y)=-\frac{f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{3}}=-\frac{4}{8}=-\frac{1}{2}$
$\begin{aligned} &\frac{d^{2} x}{d y^{2}}\left(\frac{d y}{d x}\right)^{3}+\frac{d^{2} y}{d x^{2}}=k \\ &\text { As } \frac{d x}{d y}=\frac{1}{d y / d x} \\ &\Rightarrow \frac{d^{2} x}{d y^{2}}=\frac{-d^{2} y / d x^{2}}{(d y / d x)^{3}} \\ &\Rightarrow \frac{d^{2} x}{d y^{2}}\left(\frac{d y}{d x}\right)^{3}+\frac{d^{2} y}{d x^{2}}=0 \end{aligned}$
Assertion \((\mathbf{A}):\) Let \(g(x)=f(x) \sin x\), where \(f(x)\) is a twice differentiable function on \((-\infty, \infty)\) such that \(\mathrm{f}^{\prime}(-\pi)=1\). The value of \(g^{\prime \prime}(-\pi)\) equals \(-2\). Reason \((\mathbf{R}):\) We have $g^{\prime \prime}(x)=f(x)(-\sin x)+f^{\prime}(x) \cos x+\( \)\mathrm{f}^{\prime}(\mathrm{x}) \cos x+\mathrm{f}^{\prime \prime}(\mathrm{x}) \sin \mathrm{x}$. Hence \(\mathrm{g}^{\prime \prime}(-\pi)=-2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.