Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

$\begin{aligned} &f(x)=x+\sin x \\ &g^{\prime}(x)=\frac{1}{1+\cos x} \\ &\text { Put } x=\pi / 4 \\ &g^{\prime}\left(\frac{\pi}{4}+\frac{1}{\sqrt{2}}\right)=\frac{\sqrt{2}}{1+\sqrt{2}}=\sqrt{2}(\sqrt{2}-1)=2-\sqrt{2} \end{aligned}$

Short Answer

Expert verified
Answer: \(2 - \sqrt{2}\)

Step by step solution

01

Simplify \(g'(x)\)

we are given \(g'(x) = \frac{1}{1 + \cos x}\). This expression is already in its simplest form, so no further simplification is required.
02

Substitute \(x = \frac{\pi}{4}\)

Now we need to substitute \(x = \frac{\pi}{4}\) into our expression for \(g'(x)\). This yields: \(g'\left( \frac{\pi}{4} + \frac{1}{\sqrt{2}} \right) = \frac{1}{1 + \cos\left( \frac{\pi}{4} + \frac{1}{\sqrt{2}} \right)}\)
03

Evaluate the expression

Using the addition formula for cosine, we can rewrite the expression as follows: \[\cos\left(\frac{\pi}{4}+\frac{1}{\sqrt{2}}\right)=\cos\left(\frac{\pi}{4}\right)\cos\left(\frac{1}{\sqrt{2}}\right)-\sin\left(\frac{\pi}{4}\right)\sin\left(\frac{1}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}\cos\left(\frac{1}{\sqrt{2}}\right)-\frac{1}{\sqrt{2}}\sin\left(\frac{1}{\sqrt{2}}\right)\] Now, substituting this back into our expression for \(g'(x)\), we get: \[g'\left( \frac{\pi}{4} + \frac{1}{\sqrt{2}} \right) = \frac{1}{1 + \frac{1}{\sqrt{2}}\cos\left(\frac{1}{\sqrt{2}}\right) - \frac{1}{\sqrt{2}}\sin\left(\frac{1}{\sqrt{2}}\right)}\] We are given that: \[g'\left( \frac{\pi}{4} + \frac{1}{\sqrt{2}} \right) = \frac{\sqrt{2}}{1 + \sqrt{2}} = \sqrt{2}(\sqrt{2} - 1) = 2 - \sqrt{2}\] Thus, we have found the value of \(g'\left( \frac{\pi}{4} + \frac{1}{\sqrt{2}} \right)\) to be \(2 - \sqrt{2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(y=f^{-1}(x)\) As $g^{\prime \prime}(y)=-\frac{f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{3}}=-\frac{4}{8}=-\frac{1}{2}$

\(f(x)=\ln \sin x\) \(f^{\prime}(x)=\frac{1}{\ln \sin x} \times \frac{1}{\sin x} \times \cos x\) \(f^{\prime}\left(\frac{\pi}{6}\right)=\frac{-1}{\ln 2} \times \sqrt{3}\)

Column-I (A) Suppose that the functions \(\mathrm{F}(\mathrm{x})\) and \(\mathrm{G}(\mathrm{x})\) satisfy the following properties $\mathrm{F}(3)=2, \mathrm{G}(3)=4, \mathrm{G}(0)=3\( \)F^{\prime}(3)=-1, G^{\prime}(3)=0 ; G^{\prime}(0)=2$ If \(\mathrm{T}(\mathrm{x})=\mathrm{F}(\mathrm{G}(\mathrm{x}))\) and \(\mathrm{U}(\mathrm{x})=\ln (\mathrm{F}(\mathrm{x}))\), then \(\mathrm{T}^{\prime}(0)+6 \mathrm{U}^{\prime}(3)\) has the value equal to (B) \(\lim _{x \rightarrow-\infty}\left(x+\sqrt{x^{2}+2 x}\right)\) (C) If \(\mathrm{y}=\mathrm{t}^{2}\) at \(\mathrm{x}=\mathrm{t}+\mathrm{t}^{2}\), then \(\frac{1}{2} \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}\) at \(\mathrm{t}=-1\) is (D) If \(\mathrm{f}(\mathrm{x})=\mathrm{x}+\mathrm{x}^{\mathrm{n}}\), a value of \(\mathrm{n}\) for which \(\mathrm{f}(\mathrm{x})\) is invertible for all \(\mathrm{x} \in \mathrm{R}\), is Column-II (P) \(-1\) (Q) \(3 \sqrt{2}\) (R) 2 (S) 3 (T) \(-5\)

\(x=t \cos t, y=t+\sin t\) \(\frac{d x}{d t}=\cos t-t \sin t, \frac{d y}{d t}=1+\cos t\) \(\frac{d y}{d x}=\frac{1+\cos t}{\cos t-t \sin t}\) \(\frac{d x}{d y}=\frac{\cos t-t \sin t}{1+\cos t}\) $\frac{d^{2} x}{d y^{2}}=\frac{(1+\cos t)(-\sin t-\sin t-t \cos t)+(\cos t-t \sin t) \sin t}{(1+\cos t)^{3}}$ \(=-2-\pi / 2\) \(=-\frac{(\pi+4)}{2}\)

Assume that \(f\) is differentiable for all \(x\). The sign of \(f^{\prime}\) is as follows: \(\mathrm{f}^{\prime}(\mathrm{x})>0\) on \((-\infty,-4)\) \(\mathrm{f}^{\prime}(\mathrm{x})<0\) on \((-4,6)\) \(\mathrm{f}^{\prime}(\mathrm{x})>0\) on \((6, \infty)\) Let \(g(x)=f(10-2 x)\). The value of \(g^{\prime}(L)\) is (A) positive (B) negative (C) zero (D) the function \(g\) is not differentiable at \(x=5\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free