Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

$\begin{aligned} &f(x)=\sin x+\ln x \\ &f\left(x^{2}\right)=\sin x^{2}+\ln x^{2} \\ &2 x f^{\prime}\left(x^{2}\right)=2 x \cos x^{2}+\frac{2}{x} \\ &f^{\prime}\left(x^{2}\right)=\cos x^{2}+\frac{1}{x^{2}} \end{aligned}$

Short Answer

Expert verified
Question: Find the function \(f\left(x^{2}\right)\) and its derivative, \(f'\left(x^{2}\right)\), if \(f(x) = \sin{x} + \ln{x}\). Answer: The function \(f(x^2)\) is given by \(\sin{(x^2)} + \ln{(x^2)}\), and its derivative, \(f'(x^2)\), is given by \(2x\left(\cos{(x^2)} + \frac{1}{x^2}\right)\).

Step by step solution

01

Find f(x²)

Substitute \(x^2\) into the function \(f(x)\): $$f(x^2) = \sin{(x^2)} + \ln{(x^2)}$$
02

Calculate the derivative of f(x²)

In order to compute the derivative of \(f(x^2)\), we must first remember the chain rule of differentiation: \(\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}\), where \(y = f(u)\) and \(u = (x^2)\). Differentiate \(f(u) = \sin{u} + \ln{u}\) with respect to \(u\): $$f'(u) = \frac{d(\sin{u})}{du} + \frac{d(\ln{u})}{du} = \cos{u} + \frac{1}{u}$$ Differentiate \(u = x^2\) with respect to \(x\): $$\frac{du}{dx} = \frac{d(x^2)}{dx} = 2x$$ Now by applying the chain rule, find the derivative of \(f(x^2)\) with respect to \(x\): $$f'(x^2) = 2x \left(\cos{(x^2)} + \frac{1} {x^2}\right)$$
03

Rewrite the answer in the desired form

Finally, we rewrite the answer to match the given expression: $$f'(x^2) = \cos{x^2} + \frac{1}{x^2}$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Column-I (A) If \(y=3 e^{2 x}+2 e^{3 x}\) and \(\frac{d^{2} y}{d x^{2}}+\) a. $\frac{d y}{d x}+b y=0\(. where a and \)\mathrm{b}$ are real numbers, then \(\mathrm{a}+\mathrm{b}=\) (B) $\lim _{x \rightarrow 0^{+}}\left((x \cos x)^{x}+(x \sin x)^{1 / x}\right)=$ (C) If $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\sin x}+(\sin \mathrm{x})^{\cos \mathrm{x}}\(, then \)\mathrm{f}^{\prime}\left(\frac{\pi}{2}\right)$ (D) Number of positive integer values of \(\mathrm{x}>4\) and satisfying the inequality \(\sin ^{-1}(\sin 5)<4 x-x^{2}+2\) is Column-II (P) \(\frac{\pi}{2}\) (Q) \(-1\) (R) 0 (S) 1

$\begin{aligned} &\mathrm{y}=(1-\mathrm{x})^{-\alpha} \mathrm{e}^{-\alpha \mathrm{x}}\\\ &\text { Taking log on both sides, }\\\ &\ln y=-\alpha \ln (1-x)-\alpha x\\\ &\Rightarrow \frac{1}{y} y^{\prime}=\frac{+\alpha}{1-x}-\alpha\\\ &\Rightarrow(1-x) y^{\prime}=\alpha y-\alpha y(1-x)\\\ &\Rightarrow(1-x) y^{\prime}=\alpha x y\\\ &\Rightarrow(1-x) y^{\prime \prime}-y^{\prime}=\alpha x y^{\prime}+\alpha y\\\ &\Rightarrow(1-x) y^{\prime \prime}-(1+\alpha x) y^{\prime}-\alpha y=0 \end{aligned}$

\(y=|\cos x|+|\sin x|\) \(y=\sin x-\cos x\) is the neighbourhood of \(x=\frac{2 \pi}{3}\) \(y^{\prime}=\cos x+\sin x\) \(y^{\prime}=\frac{-1}{2}+\frac{\sqrt{3}}{2}\)

If \(\mathrm{f}(\mathrm{x})=|\ln | \mathrm{x} \|\), then \(\mathrm{f}^{\prime}(\mathrm{x})\) equals (A) \(\frac{-\operatorname{sgn} \mathrm{x}}{|\mathrm{x}|}\), for \(|\mathrm{x}|<1\), where \(\mathrm{x} \neq 0\) (B) \(\frac{1}{x}\) for \(|x|>1\) and \(-\frac{1}{x}\) for \(|x|<1, x \neq 0\) (C) \(-\frac{1}{x}\) for \(|x|>1\) and \(\frac{1}{x}\) for \(|x|<1\) (D) \(\frac{1}{x}\) for \(|x|>0\) and \(-\frac{1}{x}\) for \(x<0\)

Assume that \(f\) is differentiable for all \(x\). The sign of \(f^{\prime}\) is as follows: \(\mathrm{f}^{\prime}(\mathrm{x})>0\) on \((-\infty,-4)\) \(\mathrm{f}^{\prime}(\mathrm{x})<0\) on \((-4,6)\) \(\mathrm{f}^{\prime}(\mathrm{x})>0\) on \((6, \infty)\) Let \(g(x)=f(10-2 x)\). The value of \(g^{\prime}(L)\) is (A) positive (B) negative (C) zero (D) the function \(g\) is not differentiable at \(x=5\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free