Chapter 4: Problem 35
$\begin{aligned} &f(x)=\sin x+\ln x \\ &f\left(x^{2}\right)=\sin x^{2}+\ln x^{2} \\ &2 x f^{\prime}\left(x^{2}\right)=2 x \cos x^{2}+\frac{2}{x} \\ &f^{\prime}\left(x^{2}\right)=\cos x^{2}+\frac{1}{x^{2}} \end{aligned}$
Chapter 4: Problem 35
$\begin{aligned} &f(x)=\sin x+\ln x \\ &f\left(x^{2}\right)=\sin x^{2}+\ln x^{2} \\ &2 x f^{\prime}\left(x^{2}\right)=2 x \cos x^{2}+\frac{2}{x} \\ &f^{\prime}\left(x^{2}\right)=\cos x^{2}+\frac{1}{x^{2}} \end{aligned}$
All the tools & learning materials you need for study success - in one app.
Get started for freeColumn-I (A) If \(y=3 e^{2 x}+2 e^{3 x}\) and \(\frac{d^{2} y}{d x^{2}}+\) a. $\frac{d y}{d x}+b y=0\(. where a and \)\mathrm{b}$ are real numbers, then \(\mathrm{a}+\mathrm{b}=\) (B) $\lim _{x \rightarrow 0^{+}}\left((x \cos x)^{x}+(x \sin x)^{1 / x}\right)=$ (C) If $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\sin x}+(\sin \mathrm{x})^{\cos \mathrm{x}}\(, then \)\mathrm{f}^{\prime}\left(\frac{\pi}{2}\right)$ (D) Number of positive integer values of \(\mathrm{x}>4\) and satisfying the inequality \(\sin ^{-1}(\sin 5)<4 x-x^{2}+2\) is Column-II (P) \(\frac{\pi}{2}\) (Q) \(-1\) (R) 0 (S) 1
$\begin{aligned} &\mathrm{y}=(1-\mathrm{x})^{-\alpha} \mathrm{e}^{-\alpha \mathrm{x}}\\\ &\text { Taking log on both sides, }\\\ &\ln y=-\alpha \ln (1-x)-\alpha x\\\ &\Rightarrow \frac{1}{y} y^{\prime}=\frac{+\alpha}{1-x}-\alpha\\\ &\Rightarrow(1-x) y^{\prime}=\alpha y-\alpha y(1-x)\\\ &\Rightarrow(1-x) y^{\prime}=\alpha x y\\\ &\Rightarrow(1-x) y^{\prime \prime}-y^{\prime}=\alpha x y^{\prime}+\alpha y\\\ &\Rightarrow(1-x) y^{\prime \prime}-(1+\alpha x) y^{\prime}-\alpha y=0 \end{aligned}$
\(y=|\cos x|+|\sin x|\) \(y=\sin x-\cos x\) is the neighbourhood of \(x=\frac{2 \pi}{3}\) \(y^{\prime}=\cos x+\sin x\) \(y^{\prime}=\frac{-1}{2}+\frac{\sqrt{3}}{2}\)
If \(\mathrm{f}(\mathrm{x})=|\ln | \mathrm{x} \|\), then \(\mathrm{f}^{\prime}(\mathrm{x})\) equals (A) \(\frac{-\operatorname{sgn} \mathrm{x}}{|\mathrm{x}|}\), for \(|\mathrm{x}|<1\), where \(\mathrm{x} \neq 0\) (B) \(\frac{1}{x}\) for \(|x|>1\) and \(-\frac{1}{x}\) for \(|x|<1, x \neq 0\) (C) \(-\frac{1}{x}\) for \(|x|>1\) and \(\frac{1}{x}\) for \(|x|<1\) (D) \(\frac{1}{x}\) for \(|x|>0\) and \(-\frac{1}{x}\) for \(x<0\)
Assume that \(f\) is differentiable for all \(x\). The sign of \(f^{\prime}\) is as follows: \(\mathrm{f}^{\prime}(\mathrm{x})>0\) on \((-\infty,-4)\) \(\mathrm{f}^{\prime}(\mathrm{x})<0\) on \((-4,6)\) \(\mathrm{f}^{\prime}(\mathrm{x})>0\) on \((6, \infty)\) Let \(g(x)=f(10-2 x)\). The value of \(g^{\prime}(L)\) is (A) positive (B) negative (C) zero (D) the function \(g\) is not differentiable at \(x=5\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.