Chapter 4: Problem 29
\(y=f^{-1}(x)\) As $g^{\prime \prime}(y)=-\frac{f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{3}}=-\frac{4}{8}=-\frac{1}{2}$
Chapter 4: Problem 29
\(y=f^{-1}(x)\) As $g^{\prime \prime}(y)=-\frac{f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{3}}=-\frac{4}{8}=-\frac{1}{2}$
All the tools & learning materials you need for study success - in one app.
Get started for free$\begin{aligned} y &=\ln \left|\operatorname{sece}^{x^{\prime}}\right| \\\ y^{\prime} &=\frac{1}{\sec e^{x^{2}}} \times \sec e^{x^{3}} \tan e^{x^{2}} \times e^{x^{2}} \times 2 x \\ &=2 x e^{x^{2}} \tan e^{x^{3}} \end{aligned}$
\(f\left(x^{2}\right)=x^{4}+x^{3}+1\) Put \(x=x^{2}\) \(f\left(x^{4}\right)=x^{8}+x^{6}+1\) \(f^{\prime}\left(x^{4}\right)=\frac{8 x^{7}+6 x^{5}}{4 x^{3}}\) \(=2 x^{4}+\frac{3}{2} x^{2}\)
Assertion (A) : If a differentiable function \(f(x)\) satisfies the relation $\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{x}-2)=0 \forall \mathrm{x} \in \mathrm{R}$, and if $\left(\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{x})\right)_{\mathrm{x}=\mathrm{a}}=\mathrm{b}$, then $\left(\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{x})\right)_{\mathrm{a}+4000}=\mathrm{b}$. Reason \((\mathbf{R}): \mathrm{f}(\mathrm{x})\) is a periodic function with period 4 .
\(\sqrt{\mathrm{y}+\mathrm{x}}+\sqrt{\mathrm{y}-\mathrm{x}}=\mathrm{c}\) Squaring both sides. \(2 y+2 \sqrt{y^{2}-x^{2}}=c^{2}\) Differentiating $2 y^{\prime}+\frac{2\left(y y^{\prime}-x\right)}{\sqrt{y^{2}-x^{2}}}=0$ \(y^{\prime}=\frac{x}{y+\sqrt{y^{2}-x^{2}}}=\frac{2 x}{c^{2}}\) Rationilising, we get \(y^{\prime}=\frac{y-\sqrt{y^{2}-x^{2}}}{x}\)
If \((x-c)^{2}+(y-a)^{2}=b^{2}\), then $\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}{\frac{d^{2} y}{d x^{2}}}$ is independent of (A) \(\mathrm{b}\) (B) a (C) \(\mathrm{c}\) at \(\mathrm{x}=0\) (D) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.