Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(f(x)=e^{a x}+e^{b x}\) \(f^{\prime}(x)=a e^{a x}+b e^{b x}\) \(f^{\prime \prime}(x)=a^{2} e^{a x}+b^{2} e^{b x}\) Now \(f^{\prime \prime}(x)-2 f^{\prime}(x)-15 f(x)=0\) $\Rightarrow\left(a^{2}-2 a-15\right) e^{a x}+\left(b^{2}-2 b-15\right) e^{b x}=0$ \(\Rightarrow a^{2}-2 a-15=0 \quad \& \quad b^{2}-2 b-15=0\) a, bare two roots of \(x^{2}-2 x-15=0\) \(\mathrm{ab}=-15\)

Short Answer

Expert verified
Answer: The possible pairs of values of a and b are either (5, -3) or (-3, 5).

Step by step solution

01

Solve the quadratic equation

We are given the quadratic equation \(x^2 - 2x - 15 = 0\) which we need to solve. To solve this quadratic equation, we can use the Quadratic Formula: $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ In this case, \(a = 1\), \(b = -2\), and \(c = -15\). Let's plug these values into the formula: $$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-15)}}{2(1)}$$
02

Simplify the expression

Simplify the expression inside the square root and solve for x: $$x = \frac{2 \pm \sqrt{4 + 60}}{2}$$ $$x = \frac{2 \pm \sqrt{64}}{2}$$ $$x = \frac{2 \pm 8}{2}$$ So, we have two solutions for x: \(x_1 = \frac{2+8}{2}=5\) and \(x_2=\frac{2-8}{2}=-3\). These are the roots of the given equation. Now, we need to find the values of a and b that correspond to these roots.
03

Find values of a and b

We are given that a and b are roots of the quadratic equation and their product is ab = -15. We can use the roots and this piece of information to find a and b: Since a and b are roots, we can say that one of them is 5 and the other is -3. Now, we use the product ab = -15, and we can see that: $$a \cdot b = -15$$ If we plug a = 5, we get b = -3: $$5 \cdot (-3) = -15$$ If we plug a = -3, we get b = 5: $$(-3) \cdot 5 = -15$$ So either (a, b) = (5, -3) or (a, b) = (-3, 5).
04

Conclusion

Based on solving the quadratic equation and using ab = -15, we found that the values of a and b can be either (5, -3) or (-3, 5).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

$\begin{aligned} &\mathrm{y}=\sqrt{3+2[\sin x \sin 2 \mathrm{x}+\sin x \sin 3 x+\sin 2 x \sin 3 x}\\\ &+\cos x \cos 2 x+\cos x \cos 3 x+\cos 2 x \cos 3 x]\\\ &=\sqrt{3+2[\cos x+\cos 2 x+\cos x]}\\\ &=\sqrt{3+4 \cos x+4 \cos ^{2} x-2}\\\ &=\sqrt{4 \cos ^{2} x+4 \cos x+1}\\\ &y=|2 \cos x+1|\\\ &\text { At } x=\frac{\pi}{2}\\\ &y=2 \cos x+1\\\ &y^{\prime}=-2 \sin x\\\ &\mathrm{y}^{\prime}=-2 \end{aligned}$ $\begin{aligned} &\text { At } x=\pi / 5 \\ &y=2 \cos x+1 \\ &y^{\prime}=-2 \sin x \\ &y^{\prime}=-2 \sin \pi / 5=\frac{\sqrt{5}+3}{2} \end{aligned}$

\(f(x)=\ln \sin x\) \(f^{\prime}(x)=\frac{1}{\ln \sin x} \times \frac{1}{\sin x} \times \cos x\) \(f^{\prime}\left(\frac{\pi}{6}\right)=\frac{-1}{\ln 2} \times \sqrt{3}\)

$\begin{aligned} &\mathrm{y}=(1-\mathrm{x})^{-\alpha} \mathrm{e}^{-\alpha \mathrm{x}}\\\ &\text { Taking log on both sides, }\\\ &\ln y=-\alpha \ln (1-x)-\alpha x\\\ &\Rightarrow \frac{1}{y} y^{\prime}=\frac{+\alpha}{1-x}-\alpha\\\ &\Rightarrow(1-x) y^{\prime}=\alpha y-\alpha y(1-x)\\\ &\Rightarrow(1-x) y^{\prime}=\alpha x y\\\ &\Rightarrow(1-x) y^{\prime \prime}-y^{\prime}=\alpha x y^{\prime}+\alpha y\\\ &\Rightarrow(1-x) y^{\prime \prime}-(1+\alpha x) y^{\prime}-\alpha y=0 \end{aligned}$

\(a x^{2}+b y^{2}+2 h x y=1\) \(2 a x+2 b y y^{\prime}+2 h y+2 h x y^{\prime}=0\) \(y^{\prime}=\frac{-(a x+h y)}{h x+b y}\) Differentiating again eq (I) $a+b\left(y^{\prime}\right)^{2}+b y y^{\prime \prime}+h y^{\prime}+h x y^{\prime \prime}+h y^{\prime}=0$ $\Rightarrow y^{\prime \prime}=\frac{-\left(a+b\left(y^{\prime}\right)^{2}+2 h y^{\prime}\right)}{(h x+b y)}$ $=\frac{-1}{(h x+b y)^{3}}\left[\begin{array}{l}a(h x+b y)^{2}+b(a x+h y)^{2} \\\ -2 h(a x+h y)(h x+b y)\end{array}\right]$ $=\frac{-1}{(h x+b y)^{3}}\left[\begin{array}{l}a h^{2} x^{2}+a b^{2} y^{2}+2 a b h x y+b a^{2} x^{2}+b h^{2} y^{2} \\ +2 a b h x y-2 a h^{2} x^{2}-2 a b h x y-2 h^{3} x y-2 h^{2} b y^{2}\end{array}\right]$ $=\frac{-1}{(h x+b y)^{3}}\left[a b^{2} y^{2}+b a^{2} x^{2}-a h^{2} x^{2}-h^{2} b y^{2}-2 h^{3} x y+2 a b h x y\right]$ $\quad=\frac{-1}{(h x+b y)^{3}}\left[a b\left(b y^{2}+a x^{2}+2 h x y\right)-h^{2}\left(a x^{2}+b y^{2}+2 h x y\right)\right]$ \(\quad=\frac{h^{2}-a b}{(h x+b y)^{3}}\)

Column-I (A) If \(y=3 e^{2 x}+2 e^{3 x}\) and \(\frac{d^{2} y}{d x^{2}}+\) a. $\frac{d y}{d x}+b y=0\(. where a and \)\mathrm{b}$ are real numbers, then \(\mathrm{a}+\mathrm{b}=\) (B) $\lim _{x \rightarrow 0^{+}}\left((x \cos x)^{x}+(x \sin x)^{1 / x}\right)=$ (C) If $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\sin x}+(\sin \mathrm{x})^{\cos \mathrm{x}}\(, then \)\mathrm{f}^{\prime}\left(\frac{\pi}{2}\right)$ (D) Number of positive integer values of \(\mathrm{x}>4\) and satisfying the inequality \(\sin ^{-1}(\sin 5)<4 x-x^{2}+2\) is Column-II (P) \(\frac{\pi}{2}\) (Q) \(-1\) (R) 0 (S) 1

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free