Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

$\lim _{x \rightarrow 1} \frac{n x^{n+1}-(n+1) x^{n}+1}{\left(e^{x}-e\right) \sin \pi x}$ $\lim _{h \rightarrow 0} \frac{n(1+h)^{n+1}-(n+1)(1+h)^{n}+1}{-e\left(e^{h}-1\right) \sin \pi h}$ $\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{n}(1+\mathrm{h})^{\mathrm{n}+1}-(\mathrm{n}+1)(1+\mathrm{h})^{\mathrm{n}}+1}{-\pi \mathrm{t} \mathrm{h}^{2}}$ $\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{n}(\mathrm{n}+1)(1+\mathrm{h})^{\mathrm{n}}-\mathrm{n}(\mathrm{n}+1)(1+\mathrm{h})^{\mathrm{n}-1}}{-2 \pi \mathrm{t} h}$ $\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n})(1+\mathrm{h})^{\mathrm{n}-1}-\mathrm{n}(\mathrm{n}+1)(1+\mathrm{h})^{\mathrm{n}-2}(\mathrm{n}-1)}{-2 \pi \mathrm{e}}$ $=\frac{\mathrm{n}^{2}(\mathrm{n}+1)-\mathrm{n}(\mathrm{n}-1)}{-2 \pi \mathrm{e}}(\mathrm{n}+1)=\frac{\mathrm{n}(\mathrm{n}+1)}{-2 \pi \mathrm{e}}$ Put \(\mathrm{n}=100\) \(=\frac{-5050}{\pi \mathrm{e}}\)

Short Answer

Expert verified
Answer: The limit is \(\frac{-5050}{\pi e}\).

Step by step solution

01

Choose the correct limit expression

We are given four equivalent forms of a limit expression. All four forms have the same limit. We can use the last given form to solve the problem: \(\lim _{h \rightarrow 0} \frac{n(n+1)(n)(1+h)^{n-1}-n(n+1)(1+h)^{n-2}(n-1)}{-2\pi e}\)
02

Substitute n with the given value

We need to compute the limit when n = 100. So we substitute n with 100 in the expression: \(\lim _{h \rightarrow 0} \frac{100(100+1)(100)(1+h)^{100-1}-100(100+1)(1+h)^{100-2}(100-1)}{-2\pi e}\)
03

Compute the limit

As h approaches 0, this expression simplifies as follows: \begin{align*} \lim _{h \rightarrow 0} \frac{100(101)(100)(1+h)^{99}-100(101)(1+h)^{98}(99)}{-2\pi e} &= \frac{100(101)(100)(1)^{99}-100(101)(1)^{98}(99)}{-2\pi e} \\ &= \frac{100\cdot101\cdot100-100\cdot101\cdot99}{-2\pi e} \\ &= \frac{100\cdot101}{-2\pi e} \end{align*} This is our final answer:
04

Final Answer

The limit is equal to \(\frac{-5050}{\pi e}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free