Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

$\frac{f(2 x+2 y)-f(2 x-2 y)}{f(2 x+2 y)+f(2 x-2 y)}=\frac{\cos x \sin y}{\sin x \cos y}$ Applying C \& D, $\frac{\mathrm{f}(2 \mathrm{x}+2 \mathrm{y})}{\mathrm{f}(2 \mathrm{x}-2 \mathrm{y})}=\frac{\sin (\mathrm{x}+\mathrm{y})}{\sin (\mathrm{x}-\mathrm{y})}$ \(\frac{\mathrm{f}(2 \mathrm{x}+2 \mathrm{y})}{\sin (\mathrm{x}+\mathrm{y})}\) is constant \(\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{C} \sin \frac{\mathrm{x}}{2}\) \(\mathrm{C}=1\) using \(\mathrm{f}^{\prime}(0)=\frac{1}{2}\) \(\Rightarrow \mathrm{f}(\mathrm{x})=\sin \frac{\mathrm{x}}{2}\) \(\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2} \cos \frac{\mathrm{x}}{2}\) $\mathrm{f}^{\prime \prime}(\mathrm{x})=\frac{-1}{4} \sin \frac{\mathrm{x}}{2}$ $\Rightarrow 4 \mathrm{f}^{\prime \prime}(\mathrm{x})+\mathrm{f}(\mathrm{x})=0$

Short Answer

Expert verified
Question: Determine a function f(x) that satisfies the given functional equation \(\frac{f(2 x+2 y)-f(2 x-2 y)}{f(2 x+2 y)+f(2 x-2 y)}=\frac{\cos x \sin y}{\sin x \cos y}\), with the following properties: 1. The function f(x) is continuous and differentiable for all x ∈ R. 2. There exists a function C(x) and D(x) such that applying function C(x) and D(x) to the given functional equation, we obtain the equation \(\frac{f(2 x+2 y)}{f(2 x-2 y)} = \frac{\sin (x+y)}{\sin (x-y)}\). 3. The first derivative of f(x) at 0 is 1/2, i.e., f'(0) = 1/2. 4. The second derivative of f(x) satisfies the equation 4f''(x) + f(x) = 0. Answer: The function f(x) that satisfies the given functional equation with the desired properties is given by \(f(x) = \sin \frac{x}{2}\).

Step by step solution

01

Write the given exercise in terms of f(x) and trigonometric terms

We are given the equation: \(\frac{f(2 x+2 y)-f(2 x-2 y)}{f(2 x+2 y)+f(2 x-2 y)}=\frac{\cos x \sin y}{\sin x \cos y}\)
02

Apply the C & D relationship

We are given that after applying C & D, the relationship becomes: \(\frac{f(2 x+2 y)}{f(2 x-2 y)} = \frac{\sin (x+y)}{\sin (x-y)}\)
03

Observe that f(x) is proportional to the sine function

We see that the relationship implies that: \(\frac{f(2 x+2 y)}{\sin (x+y)}\) is constant Thus, we can write it as: \(f(x) = C \sin \frac{x}{2}\), where C is a constant.
04

Determine the value of C using the given f'(0)

We are given that f'(0) = 1/2, so we differentiate f(x) with respect to x: \(f'(x) = \frac{C}{2} \cos \frac{x}{2}\) Now, substituting x = 0: \(f'(0) = \frac{C}{2}\) Since f'(0) = 1/2, we have: \(C = 1\)
05

Write f(x) and find its second derivative

Now that we have determined the constant C, we can write f(x): \(f(x) = \sin \frac{x}{2}\) Now, let us find the second derivative, f''(x): \(f'(x) = \frac{1}{2} \cos \frac{x}{2}\) \(f''(x) = -\frac{1}{4} \sin \frac{x}{2}\)
06

Show that 4f''(x) + f(x) = 0

We want to verify that 4f''(x) + f(x) = 0 for the determined function f(x). Let us compute the sum: \(4f''(x) + f(x) = 4\left(-\frac{1}{4} \sin \frac{x}{2}\right) + \sin \frac{x}{2} = -\sin \frac{x}{2} + \sin \frac{x}{2} = 0\) We have thus shown that the given functional equation is satisfied by the function f(x) = \(\sin \frac{x}{2}\) with the desired properties.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

$\begin{aligned} &f(x)=\frac{a+\sqrt{a^{2}-x^{2}}+x}{a+\sqrt{a^{2}-x^{2}}-x}=1+\frac{2 x}{a+\sqrt{a^{2}-x^{2}}-x} \\ &\text { Put } x=a \sin \theta \\ &\Rightarrow \frac{d x}{d \theta}=a \cos \theta \\ &y=f(x)=1+\frac{2 \sin \theta}{1+\cos \theta-\sin \theta} \\ &\frac{d y}{d \theta}=\frac{(1+\cos \theta-\sin \theta) 2 \cos \theta}{(1+\cos \theta-\sin \theta)^{2}}+2 \sin \theta(\sin \theta+\cos \theta) \\ &=\frac{2 \cos \theta+2}{(1+\cos \theta-\sin 0)^{2}} \\ &\frac{d y}{d x}=\frac{2(1+\cos \theta)}{(1+\cos \theta-\sin \theta)^{2}} \times \frac{1}{a \cos \theta} \\ &\text { At } x=0, \theta=0 \\ &\frac{d y}{d x}=\frac{1}{a} \end{aligned}$

$\begin{aligned} &f(x)=\sin x+\ln x \\ &f\left(x^{2}\right)=\sin x^{2}+\ln x^{2} \\ &2 x f^{\prime}\left(x^{2}\right)=2 x \cos x^{2}+\frac{2}{x} \\ &f^{\prime}\left(x^{2}\right)=\cos x^{2}+\frac{1}{x^{2}} \end{aligned}$

Assertion \((\mathbf{A}):\) Let \(g(x)=f(x) \sin x\), where \(f(x)\) is a twice differentiable function on \((-\infty, \infty)\) such that \(\mathrm{f}^{\prime}(-\pi)=1\). The value of \(g^{\prime \prime}(-\pi)\) equals \(-2\). Reason \((\mathbf{R}):\) We have $g^{\prime \prime}(x)=f(x)(-\sin x)+f^{\prime}(x) \cos x+\( \)\mathrm{f}^{\prime}(\mathrm{x}) \cos x+\mathrm{f}^{\prime \prime}(\mathrm{x}) \sin \mathrm{x}$. Hence \(\mathrm{g}^{\prime \prime}(-\pi)=-2\)

$\begin{aligned} &f(x)=y=\sin ^{-1} \cos 2 x \\ &f(5)=\sin ^{-1} \cos 10=\frac{\pi}{2}-\cos ^{-1} \cos 10 \\ &=\frac{\pi}{2}-(4 \pi-10) \\ &=10-\frac{7}{2} \pi \\ &f^{\prime}(x)=\frac{-1}{\sqrt{1-\cos ^{2} 2 x}} \times 2 \sin 2 x \\ &\Rightarrow f^{\prime}(5)=2 \\ &f(5)+f^{\prime}(5)=12-7 \frac{\pi}{2} \end{aligned}$

$\begin{aligned} &\text { A) } \begin{array}{l} y^{2}+4=\left(\sec ^{n} \theta+\cos ^{n} \theta\right)^{2} \quad \ \\ x^{2}+4=(\sec \theta+\cos \theta)^{2} \\ \frac{d x}{d \theta}=\sec \theta \tan \theta+\sin \theta \\ \frac{d y}{d \theta}=n \sec ^{n-1} \theta \sec \theta \tan \theta+n \cos ^{n-1} \theta \sin \theta \\ \left(\frac{d y}{d x}\right)^{2}=\frac{n^{2}\left(\sec ^{n} \theta \tan \theta+\cos ^{n} \theta \tan \theta\right)^{2}}{\tan ^{2} \theta(\sec \theta+\cos \theta)^{2}} \\ =\frac{n^{2}\left(y^{2}+4\right)}{x^{2}+4} \end{array} \end{aligned}$ $\begin{aligned} &\text { B) }\\\ &\text { Put } t=\tan \theta\\\ &x=0, \quad y=0\\\ &\frac{\mathrm{d} \mathrm{x}}{\mathrm{d} \theta}=1 \quad \frac{\mathrm{dy}}{\mathrm{d} \theta}=1\\\ &\Rightarrow \frac{d y}{d x}=1 \end{aligned}$ $\begin{aligned} &\text { C) }\\\ &\mathrm{e}^{y}+x y=e\\\ &\begin{aligned} &\mathrm{e}^{y} \mathrm{y}^{\prime}+\mathrm{xy}^{\prime}+\mathrm{y}=0 \\ &\mathrm{e}^{\mathrm{y}} \mathrm{y}^{\prime \prime}+\mathrm{e}^{y}\left(\mathrm{y}^{\prime}\right)^{2}+\mathrm{y}^{\prime}+\mathrm{xy}^{\prime \prime}+\mathrm{y}^{\prime}=0 \end{aligned} \end{aligned}$ $\begin{aligned} &\text { For } x=0, y=1 \\ &y^{\prime \prime}=\frac{-\left(e\left(y^{\prime}\right)^{2}+2 y^{\prime}\right)}{e} \\ &=\frac{-1}{e}\left(\frac{1}{e}-\frac{2}{e}\right)=\frac{1}{e^{2}} \end{aligned}$ $\begin{aligned} &\text { D) } \phi(x)=f(x) g(x) \\ &\phi^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\ &\phi^{\prime \prime}(x)=f^{\prime \prime}(x) g(x)+2 f^{\prime}(x) g^{\prime}(x)+f(x) g^{\prime}(x) \\ &\frac{\phi^{\prime \prime}(x)}{\phi(x)}=\frac{f^{\prime \prime}(x)}{f(x)}+\frac{g^{\prime \prime}(x)}{g(x)}+\frac{2 f^{\prime}(x)}{f(x)} \frac{g^{\prime}(x)}{g(x)} \end{aligned}$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free