Chapter 4: Problem 10
\(f(x)=\ln \sin x\) \(f^{\prime}(x)=\frac{1}{\ln \sin x} \times \frac{1}{\sin x} \times \cos x\) \(f^{\prime}\left(\frac{\pi}{6}\right)=\frac{-1}{\ln 2} \times \sqrt{3}\)
Chapter 4: Problem 10
\(f(x)=\ln \sin x\) \(f^{\prime}(x)=\frac{1}{\ln \sin x} \times \frac{1}{\sin x} \times \cos x\) \(f^{\prime}\left(\frac{\pi}{6}\right)=\frac{-1}{\ln 2} \times \sqrt{3}\)
All the tools & learning materials you need for study success - in one app.
Get started for free$\begin{aligned} &f(x)=x+\sin x \\ &g^{\prime}(x)=\frac{1}{1+\cos x} \\ &\text { Put } x=\pi / 4 \\ &g^{\prime}\left(\frac{\pi}{4}+\frac{1}{\sqrt{2}}\right)=\frac{\sqrt{2}}{1+\sqrt{2}}=\sqrt{2}(\sqrt{2}-1)=2-\sqrt{2} \end{aligned}$
$\begin{aligned} &f(x)=\sqrt{1-\sin 2 x}=\sin x-\cos x \mid \\ &\text { For } x \in(0, \pi / 4) \\ &f(x)=\cos x-\sin x \\ &f^{\prime}(x)=-(\sin x+\cos x) \\ &\text { For } x \in(\pi / 4, \pi / 2) \\ &f(x)=\sin x-\cos x \\ &f^{\prime}(x)=\cos x+\sin x \end{aligned}$
$\begin{aligned} &\text { A) } x e^{x y} \mp y+\sin ^{2} x\\\ &\text { At } x=0, \quad y=0\\\ &\text { Differentiating wrt } \mathrm{x} \text {, }\\\ &\mathrm{e}^{\mathrm{xy}}+\mathrm{xe}^{\mathrm{xy}}\left(\mathrm{y}+\mathrm{xy}^{\prime}\right)=\mathrm{y}^{\prime}+\sin 2 \mathrm{x} \end{aligned}$ At \(x=0\) \(\quad \Rightarrow 1=y^{\prime}\) B) Conceptual C) Conceptual D) $\begin{aligned} y &=\sin ^{-1} \cos \sin ^{-1} x+\cos ^{-1} \sin \cos ^{-1} x \\ &=\sin ^{-1} \sqrt{1-x^{2}}+\cos ^{-1} \sqrt{1-x^{2}} \\\ &=\frac{\pi}{2} \end{aligned}$
Let \(\mathrm{f}(\mathrm{x})=\frac{1-\mathrm{x}^{\mathrm{n}+1}}{1-\mathrm{x}}\) and \(\mathrm{g}(\mathrm{x})=1+\frac{2}{\mathrm{x}}+\frac{3}{\mathrm{x}^{2}}-\ldots\) \(\ldots . .+(-1)^{n} \frac{n+1}{x^{n}} .\) Then the constant term in \(f^{\prime}(x) \times g(x)\) is equal to (A) \(\frac{\mathrm{n}\left(\mathrm{n}^{2}-1\right)}{6}\) when \(\mathrm{n}\) is even (B) \(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\) when \(\mathrm{n}\) is odd (C) \(-\frac{\mathrm{n}}{2}(\mathrm{n}+1)\) when \(\mathrm{n}\) is even (D) \(\frac{\mathrm{n}(\mathrm{n}-1)}{2}\) when \(\mathrm{n}\) is odd
Assertion (A) : If a differentiable function \(f(x)\) satisfies the relation $\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{x}-2)=0 \forall \mathrm{x} \in \mathrm{R}$, and if $\left(\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{x})\right)_{\mathrm{x}=\mathrm{a}}=\mathrm{b}$, then $\left(\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{x})\right)_{\mathrm{a}+4000}=\mathrm{b}$. Reason \((\mathbf{R}): \mathrm{f}(\mathrm{x})\) is a periodic function with period 4 .
What do you think about this solution?
We value your feedback to improve our textbook solutions.