Chapter 4: Problem 1
\(y=|\cos x|+|\sin x|\) \(y=\sin x-\cos x\) is the neighbourhood of \(x=\frac{2 \pi}{3}\) \(y^{\prime}=\cos x+\sin x\) \(y^{\prime}=\frac{-1}{2}+\frac{\sqrt{3}}{2}\)
Chapter 4: Problem 1
\(y=|\cos x|+|\sin x|\) \(y=\sin x-\cos x\) is the neighbourhood of \(x=\frac{2 \pi}{3}\) \(y^{\prime}=\cos x+\sin x\) \(y^{\prime}=\frac{-1}{2}+\frac{\sqrt{3}}{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(3 \mathrm{f}(\cos x)+2 f(\sin x)=5 x\) Put \(x=\frac{\pi}{2}-x\) \(3 \mathrm{f}(\sin x)+2 f(\cos x)=\frac{5 \pi}{2}-5 x\) Solving (I) \& (II) \(5 f(\cos x)=25 x-5 \pi\) \(f(\cos x)=5 x-\pi\) \(f^{\prime}(\cos x)=\frac{-5}{\sin x}\)
\((f(x))^{n}=f(n x)\) Differentiating it \((f(x))^{n-1} f^{\prime}(x)=f^{\prime}(n x)\) Multiply by \(f(x)\) $\mathrm{f}(\mathrm{nx}) \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{nx}) \mathrm{f}(\mathrm{x})$
\(y=\log _{e^{t}}(x-2)^{2}\) \(y=\frac{2 \log (x-2)}{\log x}\) $y^{\prime}=\frac{2(\log x) \times \frac{1}{x-2}-2 \log (x-2) \times \frac{1}{x}}{(\log x)^{2}}$ \(y^{\prime}=\frac{2}{\log 3}\) at \(x=3\)
$\begin{aligned} y &=\ln \left|\operatorname{sece}^{x^{\prime}}\right| \\\ y^{\prime} &=\frac{1}{\sec e^{x^{2}}} \times \sec e^{x^{3}} \tan e^{x^{2}} \times e^{x^{2}} \times 2 x \\ &=2 x e^{x^{2}} \tan e^{x^{3}} \end{aligned}$
$\begin{aligned} &y=e^{\sqrt{x}}+e^{-\sqrt{x}} \\ &\begin{array}{l} \frac{d y}{d x}=\frac{e^{\sqrt{x}}}{2 \sqrt{x}}-\frac{e^{-\sqrt{x}}}{2 \sqrt{x}} \\ =\frac{\sqrt{\left(e^{\sqrt{x}}+e^{-\sqrt{x}}\right)^{2}-4}}{2 \sqrt{x}}=\frac{\sqrt{y^{2}-4}}{2 \sqrt{x}} \end{array} \end{aligned}$
What do you think about this solution?
We value your feedback to improve our textbook solutions.