Chapter 3: Problem 7
The set of all points where \(f(x)=\sqrt[3]{x^{2}|x|}-|x|-1\) is not differentiable is (A) \(\\{0\\}\) (B) \(\\{-1,0,1\\}\) (C) \(\\{0,1\\}\) (D) none of these
Chapter 3: Problem 7
The set of all points where \(f(x)=\sqrt[3]{x^{2}|x|}-|x|-1\) is not differentiable is (A) \(\\{0\\}\) (B) \(\\{-1,0,1\\}\) (C) \(\\{0,1\\}\) (D) none of these
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(f\) be a differentiable function on the open interval \((a, b)\). Which of the following statements must be true? I. \(\mathrm{f}\) is continuous on the closed interval $[\mathrm{a}, \mathrm{b}]$ II. \(\mathrm{f}\) is bounded on the open interval \((\mathrm{a}, \mathrm{b})\) III. If \(\mathrm{a}<\mathrm{a}_{1}<\mathrm{b}_{1}<\mathrm{b}\), and \(\mathrm{f}\left(\mathrm{a}_{1}\right)<0<\mathrm{f}\left(\mathrm{b}_{1}\right)\), then there is a number \(\mathrm{c}\) such that \(\mathrm{a}_{1}<\mathrm{c}<\mathrm{b}_{1}\) and \(\mathrm{f}(\mathrm{c})=0\) (A) I and II only (B) I and III only (C) II and III only (D) only III
The number of points on \([0,2]\) where $f(x)= \begin{cases}x\\{x\\}+1 & 0 \leq x<1 \\ 2-\\{x\\} & 1 \leq x \leq 2\end{cases}$ fails to be continuous or derivable is (A) 0 (B) 1 (C) 2 (D) 3
Let \(f(x)\) be differentiable at \(x=h\) then $\lim _{x \rightarrow h} \frac{(x+h) f(x)-2 h f(h)}{x-h}$ is equal to (A) \(f(h)+2 h f^{\prime}\) (h) (B) \(2 f(h)+h f^{\prime}\) (C) \(\mathrm{hf}(\mathrm{h})+2 \mathrm{f}^{\prime}\) (h) (D) \(\mathrm{hf}(\mathrm{h})-2 \mathrm{f}^{\prime}\) (h)
Suppose that the differentiable functions $\mathrm{u}, \mathrm{v}, \mathrm{f}\(, \)g: R \rightarrow R\( satisfy \)\lim _{x \rightarrow \infty} u(x)=2, \lim _{x \rightarrow \infty} v(x)=3$ \(\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=\infty\) and \(\frac{f^{\prime}(x)}{g^{\prime}(x)}+u(x) \frac{f(x)}{g(x)}=v(x)\) then \(\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}\) is equal to (given that it exists) (A) 1 (B) \(1 / 2\) (C) 2 (D) None
If $f(x)=\left\\{\begin{array}{ll}{[x]+\sqrt{\\{x\\}}} & x<1 \\\ \frac{1}{[x]+\\{x\\}^{2}} & x \geq 1\end{array}\right.\(, then [where \)[.]$ and \(\\{.\) represents greatest integer part and fractional part respectively.] (A) \(f(x)\) is continuous at \(x=1\) but not differentiable (B) \(f(x)\) is not continuous at \(x=1\) (C) \(\mathrm{f}(\mathrm{x})\) is differentiable at \(\mathrm{x}=1\) (D) \(\lim _{x \rightarrow 1} f(x)\) does not exist
What do you think about this solution?
We value your feedback to improve our textbook solutions.