Chapter 3: Problem 6
The number of points where \(f(x)=(x+1)^{23}+|x-1|^{\sqrt{3}}\), is non- differentiable is (A) 1 (B) 2 (C) 3 (D) none
Chapter 3: Problem 6
The number of points where \(f(x)=(x+1)^{23}+|x-1|^{\sqrt{3}}\), is non- differentiable is (A) 1 (B) 2 (C) 3 (D) none
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{h}(\mathrm{x})\) be differentiable for \(\mathrm{all} \mathrm{x}\) and let $\mathrm{f}(\mathrm{x})=\left(\mathrm{k} \mathrm{x}+\mathrm{e}^{x}\right)$ \(\mathrm{h}(\mathrm{x})\) where \(\mathrm{k}\) is some constant. If $h(0)=5, \mathrm{~h}^{\prime}(0)=-2\( and \)f^{\prime}(0)=18\( then the value of \)k$ is equal to (A) 5 (B) 4 (C) 3 (D) \(2.2\)
Let \(f(x)=\cos x\) and \(g(x)=\) $g(x)= \begin{cases}\text { minimum }\\{f(t): 0 \leq t \leq x\\}, x \in[0, \pi] \\ \sin x-1, & x>\pi\end{cases}$ then (A) \(g(x)\) is discontinuous at \(x=\pi\) (B) \(g(x)\) is continuous for \(x \in[0, \infty)\) (C) \(\mathrm{g}(\mathrm{x})\) is differentiable at \(\mathrm{x}=\pi\) (D) \(g(x)\) is differentiable for \(x[0, \infty)\)
Let $f(x)=\left\\{\begin{array}{cl}\frac{\sin \left|x^{2}-5 x+6\right|}{x^{2}-5 x+6}, & x \neq 2,3 \\ 1 & , x=2 \text { or } 3\end{array}\right.$ The set of all points where \(f\) is differentiable is (A) \((\infty, \infty)\) (B) \((-\infty, \infty)-\\{2\\}\) (C) \((-\infty, \infty)-\\{3\\}\) (T) \((-\infty, \infty)-\\{2,3\\}\)
Let \(f(x)\) be defined for all \(x \in R\) and the continuous. Let $\mathrm{f}(\mathrm{x}+\mathrm{y})-\mathrm{f}(\mathrm{x}-\mathrm{y})=4 \mathrm{xy} \forall \mathrm{x}, \mathrm{y}=\in \mathrm{R}$ and \(f(0)=0\) then (A) \(\mathrm{f}(\mathrm{x})\) is bounded (B) \(f(x)+f\left(\frac{1}{x}\right)=f\left(x+\frac{1}{x}\right)+2\) (C) \(\mathrm{f}(\mathrm{x})+\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)=\mathrm{f}\left(\mathrm{x}-\frac{1}{\mathrm{x}}\right)+2\) (D) none of these
If \(f(x)=\frac{x}{1+e^{1 / x}}, x \neq 0\) and \(f(0)=0\) then, (A) \(f(x)\) is continuous at \(x=0\) and \(f^{\prime}(x)=1\) (B) \(\mathrm{f}(\mathrm{x})\) is discontinuous at \(\mathrm{x}=0\) (C) \(\mathrm{f}(\mathrm{x})\) is continuous at \(\mathrm{x}=0\) and \(\mathrm{f}^{\prime}(\mathrm{x})\) does not exists (D) \(f(x)\) is continuous at \(x=0\) and \(f^{\prime}(x)=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.