Chapter 3: Problem 48
If for a function \(f(x): f(2)=3, f^{\prime}(2)=4\), then $\lim _{x \rightarrow 2}[f(x)]$, where [. ] denotes the greatest integer function, is (A) 2 (B) 3 (C) 4 (D) dne
Chapter 3: Problem 48
If for a function \(f(x): f(2)=3, f^{\prime}(2)=4\), then $\lim _{x \rightarrow 2}[f(x)]$, where [. ] denotes the greatest integer function, is (A) 2 (B) 3 (C) 4 (D) dne
All the tools & learning materials you need for study success - in one app.
Get started for freeThe number of points on \([0,2]\) where $f(x)= \begin{cases}x\\{x\\}+1 & 0 \leq x<1 \\ 2-\\{x\\} & 1 \leq x \leq 2\end{cases}$ fails to be continuous or derivable is (A) 0 (B) 1 (C) 2 (D) 3
Let $f(x)=\left[\begin{array}{ll}\frac{3 x^{2}+2 x-1}{6 x^{2}-5 x+1} & \text { for } x \neq \frac{1}{3} \\ -4 & \text { for } x=\frac{1}{3}\end{array}\right.\( then \)f^{\prime}\left(\frac{1}{3}\right)$ (A) is equal to-9 (B) is equal to \(-27\) (C) is equal to 27 (D) does not exist
Suppose that the differentiable functions $\mathrm{u}, \mathrm{v}, \mathrm{f}\(, \)g: R \rightarrow R\( satisfy \)\lim _{x \rightarrow \infty} u(x)=2, \lim _{x \rightarrow \infty} v(x)=3$ \(\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=\infty\) and \(\frac{f^{\prime}(x)}{g^{\prime}(x)}+u(x) \frac{f(x)}{g(x)}=v(x)\) then \(\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}\) is equal to (given that it exists) (A) 1 (B) \(1 / 2\) (C) 2 (D) None
Given \(\mathrm{f}(\mathrm{x})\) is a differentiable function of \(\mathrm{x}\), satisfying \(f(x) . f(y)=f(x)+f(y)+f(x y)-2\) and that \(f(2)=5\). Then \(\mathrm{f}(3)\) is equal to (A) 10 (B) 24 (C) 15 (D) none
If $f(x)=\left\\{\begin{array}{ll}{[x]+\sqrt{\\{x\\}}} & x<1 \\\ \frac{1}{[x]+\\{x\\}^{2}} & x \geq 1\end{array}\right.\(, then [where \)[.]$ and \(\\{.\) represents greatest integer part and fractional part respectively.] (A) \(f(x)\) is continuous at \(x=1\) but not differentiable (B) \(f(x)\) is not continuous at \(x=1\) (C) \(\mathrm{f}(\mathrm{x})\) is differentiable at \(\mathrm{x}=1\) (D) \(\lim _{x \rightarrow 1} f(x)\) does not exist
What do you think about this solution?
We value your feedback to improve our textbook solutions.