Chapter 3: Problem 46
Suppose \(f\) is a differentiable function such that \(f(x+y)=f(x)+f(y)+5 x y\) for all \(x, y\) and \(f^{\prime}(0)=3\). The minimum value of \(f(x)\) is (A) \(-1\) (B) \(-9 / 10\) (C) \(-9 / 25\) (D) None
Chapter 3: Problem 46
Suppose \(f\) is a differentiable function such that \(f(x+y)=f(x)+f(y)+5 x y\) for all \(x, y\) and \(f^{\prime}(0)=3\). The minimum value of \(f(x)\) is (A) \(-1\) (B) \(-9 / 10\) (C) \(-9 / 25\) (D) None
All the tools & learning materials you need for study success - in one app.
Get started for freeLet $\mathrm{f}(\mathrm{x})=\lim _{\mathrm{n} \rightarrow \infty} \frac{\left(\mathrm{x}^{2}+2 \mathrm{x}+3+\sin \pi \mathrm{x}\right)^{\mathrm{n}}-1}{\left(\mathrm{x}^{2}+2 \mathrm{x}+3+\sin \pi \mathrm{x}\right)^{\mathrm{n}}+1}$, then (A) \(\mathrm{f}(\mathrm{x})\) is continuous and differentiable for all \(\mathrm{x} \in \mathrm{R}\). (B) \(f(x)\) is continuous but not differentiable for all \(x \in R\). (C) \(\mathrm{f}(\mathrm{x})\) is discontinuous at infinite number of points. (D) \(\mathrm{f}(\mathrm{x})\) is discontinuous at finite number of points.
If $\mathrm{f}(\mathrm{x}+\mathrm{y}+\mathrm{z})=\mathrm{f}(\mathrm{x}) \cdot \mathrm{f}(\mathrm{y}) \cdot \mathrm{f}(\mathrm{z})\( for all \)\mathrm{x}, \mathrm{y}, \mathrm{z}$ and \(f(2)=4, f^{\prime}(0)=3\), then \(f^{\prime}(2)\) equals (A) 12 (B) 9 (C) 16 (D) 6
If \(f(x)=\frac{x}{1+e^{1 / x}}, x \neq 0\) and \(f(0)=0\) then, (A) \(f(x)\) is continuous at \(x=0\) and \(f^{\prime}(x)=1\) (B) \(\mathrm{f}(\mathrm{x})\) is discontinuous at \(\mathrm{x}=0\) (C) \(\mathrm{f}(\mathrm{x})\) is continuous at \(\mathrm{x}=0\) and \(\mathrm{f}^{\prime}(\mathrm{x})\) does not exists (D) \(f(x)\) is continuous at \(x=0\) and \(f^{\prime}(x)=0\)
I.et \(\mathrm{f}(\mathrm{x})\) be a function such that \(\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})\) and \(f(x)=\sin x g(x)\) for all \(x, y \in R\), If \(g(x)\) is a continuous function such that \(\mathrm{g}(0)=\mathrm{K}\), then \(f^{\prime}(\mathrm{x})\) is equal to (A) \(\mathrm{K}\) (B) \(\mathrm{Kx}\) (C) \(\mathrm{Kg}(\mathrm{x})\) (D) none
Let \(f(x)\) be defined for all \(x \in R\) and the continuous. Let $\mathrm{f}(\mathrm{x}+\mathrm{y})-\mathrm{f}(\mathrm{x}-\mathrm{y})=4 \mathrm{xy} \forall \mathrm{x}, \mathrm{y}=\in \mathrm{R}$ and \(f(0)=0\) then (A) \(\mathrm{f}(\mathrm{x})\) is bounded (B) \(f(x)+f\left(\frac{1}{x}\right)=f\left(x+\frac{1}{x}\right)+2\) (C) \(\mathrm{f}(\mathrm{x})+\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)=\mathrm{f}\left(\mathrm{x}-\frac{1}{\mathrm{x}}\right)+2\) (D) none of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.