Chapter 3: Problem 37
The function \(f(x)=\) maximum \(\\{\sqrt{x(2-x)}, 2-x\\}\) is nondifferentiable at \(x\) equal to (A) 1 (B) 0,2 (C) 0,1 (D) 1,2
Chapter 3: Problem 37
The function \(f(x)=\) maximum \(\\{\sqrt{x(2-x)}, 2-x\\}\) is nondifferentiable at \(x\) equal to (A) 1 (B) 0,2 (C) 0,1 (D) 1,2
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\) satisfying $|\mathrm{f}(\mathrm{x})| \leq \mathrm{x}^{2} \forall \mathrm{x} \in \mathrm{R}$, then (A) ' \(f\) is continuous but non-differentiable at \(x=0\) (B) ' \(\mathrm{f}^{\prime}\) is discontinuous at \(\mathrm{x}=0\) (C) ' \(\mathrm{f}^{\prime}\) is differentiable at \(\mathrm{x}=0\) (D) None of these
Let $\mathrm{f}(\mathrm{x})=\lim _{\mathrm{n} \rightarrow \infty} \frac{\left(\mathrm{x}^{2}+2 \mathrm{x}+3+\sin \pi \mathrm{x}\right)^{\mathrm{n}}-1}{\left(\mathrm{x}^{2}+2 \mathrm{x}+3+\sin \pi \mathrm{x}\right)^{\mathrm{n}}+1}$, then (A) \(\mathrm{f}(\mathrm{x})\) is continuous and differentiable for all \(\mathrm{x} \in \mathrm{R}\). (B) \(f(x)\) is continuous but not differentiable for all \(x \in R\). (C) \(\mathrm{f}(\mathrm{x})\) is discontinuous at infinite number of points. (D) \(\mathrm{f}(\mathrm{x})\) is discontinuous at finite number of points.
If \(\mathrm{y}=|1-| 2-|3-| 4-\mathrm{x}|||| ;\) then number of points where \(\mathrm{y}\) is not differentiable; is (A) 1 (B) 3 (C) 5 (D) \(>5\)
Total number of the points where the function $f(x)=\min \\{|x|-1,|x-2|-1 \mid$ is not differentiable (A) 3 points (B) 4 points (C) 5 points (D) None of these
The set of values of \(x\) for which the function defined as $f(x)=\left[\begin{array}{ll}1-x \quad x<1 & \\ (1-x)(2-x) & 1 \leq x \leq 2 \\\ 3-x & x>2\end{array}\right.$ fails to be continuous or differentiable, is (A) \(\\{1\\}\) (B) \(\\{2\\}\) (C) \(\\{1,2\\}\) (D) \(\phi\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.