Chapter 3: Problem 33
The number of points on \([0,2]\) where $f(x)= \begin{cases}x\\{x\\}+1 & 0 \leq x<1 \\ 2-\\{x\\} & 1 \leq x \leq 2\end{cases}$ fails to be continuous or derivable is (A) 0 (B) 1 (C) 2 (D) 3
Chapter 3: Problem 33
The number of points on \([0,2]\) where $f(x)= \begin{cases}x\\{x\\}+1 & 0 \leq x<1 \\ 2-\\{x\\} & 1 \leq x \leq 2\end{cases}$ fails to be continuous or derivable is (A) 0 (B) 1 (C) 2 (D) 3
All the tools & learning materials you need for study success - in one app.
Get started for freeI et \(f\) be a function such that \(f(x+y)=f(x)+f(y)\) for all \(x\) and \(y\) and \(f(x)=\left(2 x^{2}+3 x\right) g(x)\) for all \(x\) where \(g(x)\) is continuous and \(g(0)=3 .\) Then \(f^{\prime}(x)\) is equal to (A) 9 (B) 3 (C) 6 (D) nonc
Let \(\mathrm{f}\) be an injective and differentiable function such that f(x). \(f(y)+2=f(x)+f(y)+f(x y)\) for all non negative real \(x\) and \(y\) with \(f^{\prime}(0)=0, f^{\prime}(1)=2 \neq f(0)\), then (A) \(x f^{\prime}(x)-2 f(x)+2=0\) (B) \(x f^{\prime}(x)+2 f(x)-2=0\) (C) \(\times f^{\prime}(x)-f(x)+1=0\) (D) \(2 f(x)=f^{\prime}(x)+2\)
Let \(f: R \rightarrow R, f(x-f(y))=f(f(y))+x f(y)+f(x)-1 \forall x\), \(y \in R\), if \(f(0)=1\) and \(f^{\prime}(0)=0\), then (A) \(\mathrm{f}(\mathrm{x})=1-\frac{\mathrm{x}^{2}}{2}\) (B) \(f(x)=x^{2}+1\) (C) \(f(x)=\left(\frac{2 x+1}{x+1}\right)\) (D) none of these
Total number of the points where the function $f(x)=\min \\{|x|-1,|x-2|-1 \mid$ is not differentiable (A) 3 points (B) 4 points (C) 5 points (D) None of these
Suppose \(f\) is a differentiable function such that \(f(x+y)=f(x)+f(y)+5 x y\) for all \(x, y\) and \(f^{\prime}(0)=3\). The minimum value of \(f(x)\) is (A) \(-1\) (B) \(-9 / 10\) (C) \(-9 / 25\) (D) None
What do you think about this solution?
We value your feedback to improve our textbook solutions.