Chapter 3: Problem 21
If \(\mathrm{f}(\mathrm{x})=|1-\mathrm{x}|\), then the points where $\sin ^{-1}(\mathrm{f}|\mathrm{x}|)$ is non- differentiable are (A) \(\\{0,1\\}\) (B) \(\\{0,-1\\}\) (C) \(\\{0,1,-1\\}\) (D) none of these
Chapter 3: Problem 21
If \(\mathrm{f}(\mathrm{x})=|1-\mathrm{x}|\), then the points where $\sin ^{-1}(\mathrm{f}|\mathrm{x}|)$ is non- differentiable are (A) \(\\{0,1\\}\) (B) \(\\{0,-1\\}\) (C) \(\\{0,1,-1\\}\) (D) none of these
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(f: R \rightarrow R, f(x-f(y))=f(f(y))+x f(y)+f(x)-1 \forall x\), \(y \in R\), if \(f(0)=1\) and \(f^{\prime}(0)=0\), then (A) \(\mathrm{f}(\mathrm{x})=1-\frac{\mathrm{x}^{2}}{2}\) (B) \(f(x)=x^{2}+1\) (C) \(f(x)=\left(\frac{2 x+1}{x+1}\right)\) (D) none of these
Let \(f(x)=\cos x\) and \(g(x)=\) $g(x)= \begin{cases}\text { minimum }\\{f(t): 0 \leq t \leq x\\}, x \in[0, \pi] \\ \sin x-1, & x>\pi\end{cases}$ then (A) \(g(x)\) is discontinuous at \(x=\pi\) (B) \(g(x)\) is continuous for \(x \in[0, \infty)\) (C) \(\mathrm{g}(\mathrm{x})\) is differentiable at \(\mathrm{x}=\pi\) (D) \(g(x)\) is differentiable for \(x[0, \infty)\)
Suppose \(f\) is a differentiable function such that \(f(x+y)=f(x)+f(y)+5 x y\) for all \(x, y\) and \(f^{\prime}(0)=3\). The minimum value of \(f(x)\) is (A) \(-1\) (B) \(-9 / 10\) (C) \(-9 / 25\) (D) None
The number of points on \([0,2]\) where $f(x)= \begin{cases}x\\{x\\}+1 & 0 \leq x<1 \\ 2-\\{x\\} & 1 \leq x \leq 2\end{cases}$ fails to be continuous or derivable is (A) 0 (B) 1 (C) 2 (D) 3
Let \(\mathrm{f}(\mathrm{x})\) be differentiable at \(\mathrm{x}=\mathrm{h}\) then \(\lim _{x \rightarrow h} \frac{(x+h) f(x)-2 h f(h)}{x-h}\) is equal to (A) \(f(h)+2 h f^{\prime}(h)\) (B) \(2 \mathrm{f}(\mathrm{h})+\mathrm{hf}^{\prime}(\mathrm{h})\) (C) \(\mathrm{hf}(\mathrm{h})+2 \mathrm{f}^{\prime}(\mathrm{h})\) (D) \(h f(h)-2 f^{\prime}(h)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.