Chapter 3: Problem 20
If \(f(x) \cdot f(y)=f(x)+f(y)+f(x y)-2 \forall x, y \in R\) and if \(f(x)\) is not a constant function, then the value of \(f(1)\) is (A) 1 (B) 2 (C) 0 (D) \(-1\)
Chapter 3: Problem 20
If \(f(x) \cdot f(y)=f(x)+f(y)+f(x y)-2 \forall x, y \in R\) and if \(f(x)\) is not a constant function, then the value of \(f(1)\) is (A) 1 (B) 2 (C) 0 (D) \(-1\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{f}(\mathrm{x})\) be differentiable at \(\mathrm{x}=\mathrm{h}\) then \(\lim _{x \rightarrow h} \frac{(x+h) f(x)-2 h f(h)}{x-h}\) is equal to (A) \(f(h)+2 h f^{\prime}(h)\) (B) \(2 \mathrm{f}(\mathrm{h})+\mathrm{hf}^{\prime}(\mathrm{h})\) (C) \(\mathrm{hf}(\mathrm{h})+2 \mathrm{f}^{\prime}(\mathrm{h})\) (D) \(h f(h)-2 f^{\prime}(h)\)
Let \(\mathrm{h}(\mathrm{x})\) be differentiable for \(\mathrm{all} \mathrm{x}\) and let $\mathrm{f}(\mathrm{x})=\left(\mathrm{k} \mathrm{x}+\mathrm{e}^{x}\right)$ \(\mathrm{h}(\mathrm{x})\) where \(\mathrm{k}\) is some constant. If $h(0)=5, \mathrm{~h}^{\prime}(0)=-2\( and \)f^{\prime}(0)=18\( then the value of \)k$ is equal to (A) 5 (B) 4 (C) 3 (D) \(2.2\)
If for a function \(f(x): f(2)=3, f^{\prime}(2)=4\), then $\lim _{x \rightarrow 2}[f(x)]$, where [. ] denotes the greatest integer function, is (A) 2 (B) 3 (C) 4 (D) dne
The number of points where the function \(f(x)=\left(x^{2}-1\right)\left|x^{2}-x-2\right|+\sin (|x|)\) is not differentiable is (A) 0 (B) \(I\) (C) 2 (D) 3
Consider the function \(f(x)\) $= \begin{cases}x^{3} & \text { if } x<0 \\\ x^{2} & \text { if } 0 \leq x<1 \\ 2 x-1 & \text { if } 1 \leq x<2 \\\ x^{2}-2 x+3 & \text { if } x \geq 2\end{cases}$ then \(\mathrm{f}\) is continuous and differentiable for (A) \(x \in R\) (B) \(x \in R-\\{0,2\\}\) (C) \(x \in \mathbb{R}-\\{2\\}\) (D) \(x \in \mathbb{R}-\\{1,2\\}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.