Chapter 1: Problem 99
Assertion $(\mathbf{A}): \lim _{\mathrm{x} \rightarrow 0^{\circ}}\left(\mathrm{x}^{\mathrm{x}^{*}}-\mathrm{x}^{\mathrm{x}}\right)=-1$ Reason \((\mathbf{R}): \lim _{x \rightarrow 0^{\prime}} x^{x}(x-1)=-1\)
Chapter 1: Problem 99
Assertion $(\mathbf{A}): \lim _{\mathrm{x} \rightarrow 0^{\circ}}\left(\mathrm{x}^{\mathrm{x}^{*}}-\mathrm{x}^{\mathrm{x}}\right)=-1$ Reason \((\mathbf{R}): \lim _{x \rightarrow 0^{\prime}} x^{x}(x-1)=-1\)
All the tools & learning materials you need for study success - in one app.
Get started for free$\lim _{x \rightarrow-\infty}\left\\{x+\sqrt{x^{2}+3 x \cos \frac{1}{|x|}}\right\\}$ is equal to (A) \(3 / 2\) (B) \(-3 / 2\) (C) \(-1\) (D) none of these
\(\lim _{n \rightarrow \infty}\left(\sum_{r=1}^{m} r^{n}\right)^{1 / n}\) is equal to, \((n \in N)\) (A) \(\mathrm{m}\) (B) \(\mathrm{m} / 2\) (C) \(\mathrm{e}^{\mathrm{m}}\) (D) \(\mathrm{e}^{\mathrm{m} 2}\)
Column - I (A) If $\lim _{x \rightarrow \infty}\left(\sqrt{\left(x^{2}-x-1\right)}-a x-b\right)=0\(, where \)a>0$, then there exists atleast one a and \(b\) for which point (a, \(2 b\) ) lies on the line (B) If $\lim _{x \rightarrow 0} \frac{\left(1+a^{3}\right)+8 e^{1 / x}}{1+\left(1-b^{3}\right) e^{1 / x}}=2$, then there exists atleast one \(a\) and \(b\) for which point \(\left(a, b^{3}\right)\) lies on the line (C) If $\lim _{\mathrm{x} \rightarrow \infty}\left(\sqrt{\left(\mathrm{x}^{4}-\mathrm{x}^{2}+1\right)}-\mathrm{ax}^{2}-\mathrm{b}\right)=0$, then there exists atleast one a and \(\mathrm{b}\) for which point \((\mathrm{a},-2 \mathrm{~b})\) lies on the line (D) If \(\lim _{x \rightarrow-a} \frac{x^{7}+a^{7}}{x+a}=7\), where \(a<0\), then there exists atleast one a for which point \((a, 2)\) lies on the line. Column - II (P) \(\mathrm{y}=-3\) (Q) \(3 x-2 y-5=0\) (R) \(15 x-2 y-13=0\) (S) \(\mathrm{y}=2\)
Assertion \((\mathbf{A}):\) Let \(\mathrm{f}:(0, \infty) \rightarrow \mathrm{R}\) be a twice continuously differentiable function such that $\left|f^{\prime}(x)+2 x f^{\prime}(x)+\left(x^{2}+1\right) f(x)\right| \leq 1\( for all \)x$ Then \(\lim _{x \rightarrow \infty} f(x)=0\). Reason (R) : Applying L'Hospital's rule twice on the function $\frac{f(x) e^{\frac{x^{2}}{2}}}{e^{\frac{x^{3}}{2}}}\( we get \)\lim _{x \rightarrow \infty} f(x)=0$.
The function(s) which have a limit as \(\mathrm{n} \rightarrow \infty\) (A) \(\left(\frac{n-1}{n+1}\right)^{2}\) (B) \((-1)^{n}\left(\frac{n-1}{n+1}\right)^{2}\) (C) \(\frac{n^{2}+1}{n}\) (D) \((-1)^{n} \frac{n^{2}+1}{n}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.