Column - I
(A) \(\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{e^{x^{3}}-e^{x}+x}\) equals
(B) If the value of $\lim _{\mathrm{x} \rightarrow 0^{-}}\left(\frac{(3 /
\mathrm{x})+1}{(3 / \mathrm{x})-1}\right)^{1 / \mathrm{x}}$ can be expressed
in the
form of \(\mathrm{e}^{\mathrm{iq}}\), where \(\mathrm{p}\) and \(\mathrm{q}\) are
relative prime then \((\mathrm{p}+\mathrm{q})\) is equal to
(C) \(\lim _{x \rightarrow 0} \frac{\tan ^{3} x-\tan x^{3}}{x^{5}}\) equals
(D) $\lim _{x \rightarrow 0} \frac{x+2 \sin x}{\sqrt{x^{2}+2 \sin
x+1}-\sqrt{\sin ^{2} x-x+1}}$
Column-II
(P) 1
(Q) 2
(R) 4
(S) 5