Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Given $l_{1}=\lim _{x \rightarrow \frac{\pi}{4}} \cos ^{-1}\left[\sec \left(x-\frac{\pi}{4}\right)\right]$; $l_{2}=\lim _{x \rightarrow \frac{\pi}{4}} \sin ^{-1}\left[\operatorname{cosec}\left(x+\frac{\pi}{4}\right)\right]$ $l_{3}=\lim _{x \rightarrow \frac{\pi}{4}} \tan ^{-1}\left[\cot \left(x+\frac{\pi}{4}\right)\right]$ $l_{4}=\lim _{x \rightarrow \frac{\pi}{4}} \cot ^{-1}\left[\tan \left(x-\frac{\pi}{4}\right)\right]$ where \([\mathrm{x}]\) denotes greatest integer function then which of the following limits exist (A) \(l_{1}\) (B) \(l_{2}\) (D) \(l_{4}\) (C) \(l_{3}\)

Short Answer

Expert verified
a) \(l_{1}\) b) \(l_{2}\) c) \(l_{3}\) d) \(l_{4}\) Answer: All of the given limits, \(l_1, l_2, l_3,\) and \(l_4\), exist.

Step by step solution

01

Compute limit \(l_{1}\)

To compute the limit \(l_{1}\), we have $$l_{1} = \lim _{x \rightarrow \frac{\pi}{4}} \cos ^{-1}\left[\sec\left(x-\frac{\pi}{4}\right)\right].$$ Using the identities: \(\cos^{-1}(x) = \pi/2 - \sin^{-1}(x)\) and \(\sec(x) = 1/\cos(x)\), we can modify the limit as $$l_1 = \lim_{x\rightarrow\frac{\pi}{4}}\left(\frac{\pi}{2} - \sin^{-1}\left(\cos\left(x-\frac{\pi}{4}\right)\right)\right).$$ Now evaluate the limit, using the fact that \(\sin^{-1}(\sin(x)) = x\), $$l_1 = \frac{\pi}{2} - \left(\frac{\pi}{4} - \frac{\pi}{4}\right) = \frac{\pi}{2}.$$ So, the limit \(l_{1}\) exists.
02

Compute limit \(l_{2}\)

To compute the limit \(l_{2}\), we have $$l_{2} = \lim _{x \rightarrow \frac{\pi}{4}} \sin ^{-1}\left[\operatorname{cosec}\left(x+\frac{\pi}{4}\right)\right].$$Using the identity: \(\cosec(x) = 1/\sin(x)\), we can modify the limit as $$l_2 = \lim_{x\rightarrow\frac{\pi}{4}} \sin^{-1}\left(\frac{1}{\sin\left(x +\frac{\pi}{4}\right)}\right).$$ Now evaluate the limit, using the fact that \(\sin^{-1}(\sin(x)) = x\), $$l_2 = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}.$$ So, the limit \(l_{2}\) exists.
03

Compute limit \(l_{3}\)

To compute the limit \(l_{3}\), we have $$l_{3}=\lim _{x \rightarrow \frac{\pi}{4}} \tan ^{-1}\left[\cot \left(x+\frac{\pi}{4}\right)\right].$$ Using the identities: \(\tan^{-1}(x) = \pi/2 - \cot^{-1}(x)\) and \(\cot(x) = 1/\tan(x)\), we can modify the limit as $$l_3 = \lim_{x\rightarrow\frac{\pi}{4}}\left(\frac{\pi}{2} - \cot^{-1}\left(\tan\left(x+\frac{\pi}{4}\right)\right)\right).$$ Now evaluate the limit, using the fact that \(\cot^{-1}(\cot(x)) = x\), $$l_3 = \frac{\pi}{2} - \left(\frac{\pi}{4} + \frac{\pi}{4}\right) = 0.$$ So, the limit \(l_{3}\) exists.
04

Compute limit \(l_{4}\)

To compute the limit \(l_{4}\), we have $$l_{4}=\lim _{x \rightarrow \frac{\pi}{4}} \cot ^{-1}\left[\tan \left(x-\frac{\pi}{4}\right)\right].$$ Using the identities: \(\cot^{-1}(x) = \pi/2 - \tan^{-1}(x)\) and \(\tan(x) = 1/\cot(x)\), we can modify the limit as $$l_4 = \lim_{x\rightarrow\frac{\pi}{4}}\left(\frac{\pi}{2} - \tan^{-1}\left(\cot\left(x-\frac{\pi}{4}\right)\right)\right).$$ Now evaluate the limit, using the fact that \(\tan^{-1}(\tan(x)) = x\), $$l_4 = \frac{\pi}{2} - \left(\frac{\pi}{4} - \frac{\pi}{4}\right) = \frac{\pi}{2}.$$ So, the limit \(l_{4}\) exists. Now, all the limits \(l_1, l_2, l_3,\) and \(l_4\) exist. Therefore, the correct answer is all options (A), (B), (C), and (D).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Which of the following functions have a graph which lies between the graphs of \(\mathrm{y}=|\mathrm{x}|\) and \(\mathrm{y}=-|\mathrm{x}|\) and have a limiting value as \(\mathrm{x} \rightarrow 0\). (A) \(\mathrm{y}=\mathrm{x} \cos \mathrm{x}\) (B) \(y=|x| \sin x\) (C) \(\mathrm{y}=\mathrm{x} \cos \frac{\mathrm{l}}{\mathrm{x}}\) (D) \(\mathrm{y}=\left|\mathrm{x} \sin \frac{1}{\mathrm{x}}\right|\)

The value of $\lim _{x \rightarrow 2}\left(\left(\frac{x^{3}-4 x}{x^{3}-8}\right)^{-1}-\left(\frac{x+\sqrt{2 x}}{x-2}-\frac{\sqrt{2}}{\sqrt{x}-\sqrt{2}}\right)^{-1}\right)$ is (A) \(1 / 2\) (B) 2 (C) 1 (D) None of these

$\lim _{x \rightarrow-\infty}\left\\{x+\sqrt{x^{2}+3 x \cos \frac{1}{|x|}}\right\\}$ is equal to (A) \(3 / 2\) (B) \(-3 / 2\) (C) \(-1\) (D) none of these

Let $\mathrm{f}(\mathrm{x})=\lim _{\mathrm{n} \rightarrow \infty} \frac{2 \mathrm{x}^{2 \mathrm{n}} \sin \frac{1}{\mathrm{x}}+\mathrm{x}}{1+\mathrm{x}^{2 \mathrm{n}}}$ then which of the following alternative(s) is/are correct ? (A) \(\lim _{x \rightarrow \infty} x f(x)=2\) (B) \(\lim \mathrm{f}(\mathrm{x})\) does not exist (C) \(\lim _{x \rightarrow 0} f(x)\) does not exist (D) \(\lim _{x \rightarrow-\gamma} \mathrm{f}(\mathrm{x})\) is equal to zero.

If \(\mathrm{f}(\mathrm{x})=0\) be a quadratic equation such that \(\mathrm{f}(-\pi)=\mathrm{f}(\pi)=0\) and \(\mathrm{f}\left(\frac{\pi}{2}\right)=-\frac{3 \pi^{2}}{4}\), then $\lim _{\mathrm{x} \rightarrow-\pi} \frac{\mathrm{f}(\mathrm{x})}{\sin (\sin \mathrm{x})}$ is equal to (A) 0 (B) \(\pi\) (C) \(2 \pi\) (D) None of these

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free