Chapter 1: Problem 84
The function(s) which have a limit as \(\mathrm{x} \rightarrow \infty\) (A) \(\frac{\sin x \pi}{x}\) (B) \(a \cos ^{2} x \pi+b \sin ^{2} x \pi\) (C) \(\mathrm{x} \sin \mathrm{x} \pi\) (D) \(\tan \mathrm{x} \pi\)
Chapter 1: Problem 84
The function(s) which have a limit as \(\mathrm{x} \rightarrow \infty\) (A) \(\frac{\sin x \pi}{x}\) (B) \(a \cos ^{2} x \pi+b \sin ^{2} x \pi\) (C) \(\mathrm{x} \sin \mathrm{x} \pi\) (D) \(\tan \mathrm{x} \pi\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe value of $\lim _{n \rightarrow \infty}\left(\frac{n !}{n^{n}}\right)^{\frac{2 n^{\prime}+1}{5 n^{2}+1}}$ is equal to (A) \(]\) (B) 0 (C) \(\left(\frac{1}{\mathrm{e}}\right)^{2 / 5}\) (D) \(\mathrm{e}^{2 / 3}\)
The value of the limit $\lim _{n \rightarrow \infty} \mathrm{n}^{2}(\sqrt[n]{a}-\sqrt[n+1]{a})(a>0)$ is (A) \(\ell\) n a (B) \(\mathrm{e}^{\mathrm{a}}\) (C) \(\mathrm{e}^{-\mathrm{a}}\) (D) none of these
$\lim _{x \rightarrow 0} \lim _{x \rightarrow 0} \frac{2(\tan x-\sin x)-x^{3}}{x^{5}}$ is equal to (A) \(1 / 4\) (B) \(1 / 2\) (C) \(1 / 3\) (D) None of these
The limit $\lim _{n \rightarrow \infty}\left(1+\frac{1}{5}\right)\left(1+\frac{1}{5^{2}}\right)\left(1+\frac{1}{5^{4}}\right) \ldots\left(1+\frac{1}{5^{2^{*}}}\right)$ is equal to (A) 0 (B) \(5 / 4\) (C) \(4 / 5\) (D) \(1 / 5\)
If \(\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-x+1}-a x-b\right)=0\), then for \(k \geq 2, k \in\) \(\mathrm{N}\) which of the following is/are correct ? (A) \(2 \mathrm{a}+\mathrm{b}=0\) (B) \(a+2 b=0\) (C) \(\lim _{n \rightarrow \infty} \sec ^{2 n}(k ! \pi b)=1\) (D) \(\lim _{n \rightarrow \infty} \sec ^{2 n}(k ! \pi a)=1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.