Chapter 1: Problem 79
Which of the following functions has a vertical asymptote at \(\mathrm{x}=-1\). (A) \(y=\frac{\left|x^{2}-1\right|}{x+1}\) (B) \(y=\frac{x^{2}-6 x-7}{x+1}\) (C) \(y=\frac{x^{2}+1}{x+1}\) (D) \(y=\frac{\sin (x+2)}{x+1}\)
Chapter 1: Problem 79
Which of the following functions has a vertical asymptote at \(\mathrm{x}=-1\). (A) \(y=\frac{\left|x^{2}-1\right|}{x+1}\) (B) \(y=\frac{x^{2}-6 x-7}{x+1}\) (C) \(y=\frac{x^{2}+1}{x+1}\) (D) \(y=\frac{\sin (x+2)}{x+1}\)
All the tools & learning materials you need for study success - in one app.
Get started for free$\lim _{x \rightarrow 0} \frac{1}{x}\left(\sqrt{\frac{1}{x^{2}}+1}-\frac{1}{x}\right)+x \ln \left(1+a^{1 / x}\right), a>0, a \neq$ (A) a (B) (C) \(1+\mathrm{a}\) (D) None of these
Column - I (A) \(\lim _{x \rightarrow \infty}(\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}})\) equals (B) The value of the limit, $\lim _{x \rightarrow 0} \frac{\sin 2 x-2 \tan x}{\ln \left(1+x^{3}\right)}$ is (C) $\lim _{x \rightarrow 0^{-}}\left(\ln \sin ^{3} x-\ln \left(x^{4}+e x^{3}\right)\right)$ equals (D) Let tan \((2 \pi|\sin \theta|)=\cot (2 \pi|\cos \theta|)\), where $\theta \in \mathbb{R}$ and \(\mathrm{f}(\mathrm{x})=(|\sin \theta|+\cos \theta \mid)^{\mathrm{x}} .\) The value of $\lim _{\mathrm{x} \rightarrow \infty}\left[\frac{2}{\mathrm{f}(\mathrm{x})}\right]$ equals (Here [] represents greatest integer function) Column - II (P) \(-2\) (Q) \(-1\) (R) 0 (S) 1
If \(\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-x+1}-a x-b\right)=0\), then for \(k \geq 2, k \in\) \(\mathrm{N}\) which of the following is/are correct ? (A) \(2 \mathrm{a}+\mathrm{b}=0\) (B) \(a+2 b=0\) (C) \(\lim _{n \rightarrow \infty} \sec ^{2 n}(k ! \pi b)=1\) (D) \(\lim _{n \rightarrow \infty} \sec ^{2 n}(k ! \pi a)=1\)
Given $l_{1}=\lim _{x \rightarrow \frac{\pi}{4}} \cos ^{-1}\left[\sec \left(x-\frac{\pi}{4}\right)\right]$; $l_{2}=\lim _{x \rightarrow \frac{\pi}{4}} \sin ^{-1}\left[\operatorname{cosec}\left(x+\frac{\pi}{4}\right)\right]$ $l_{3}=\lim _{x \rightarrow \frac{\pi}{4}} \tan ^{-1}\left[\cot \left(x+\frac{\pi}{4}\right)\right]$ $l_{4}=\lim _{x \rightarrow \frac{\pi}{4}} \cot ^{-1}\left[\tan \left(x-\frac{\pi}{4}\right)\right]$ where \([\mathrm{x}]\) denotes greatest integer function then which of the following limits exist (A) \(l_{1}\) (B) \(l_{2}\) (D) \(l_{4}\) (C) \(l_{3}\)
$\lim _{x \rightarrow 0} \frac{\ell n\left(1+x+x^{2}\right)+\ell n\left(1-x+x^{2}\right)}{\sec x-\cos x}$ is equal to (A) 1 (B) \(-1\) (C) 0 (D) \(\infty\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.