Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(\mathrm{f}(\mathrm{x})\) be defined for all \(\mathrm{x} \in \mathrm{R}\) such that $\lim _{x \rightarrow 0}\left[f(x)+\ln \left(1-\frac{1}{\mathrm{e}^{f(x)}}\right)-\ln (f(x))\right]=0$ then \(\mathrm{f}(0)\) is (A) 0 (B) 1 (C) 2 (D) 3

Short Answer

Expert verified
Now that we have found the solution, the short answer is as follows: Given the limit equation, we manipulated it using logarithmic properties, exponentiation, simplification, and L'Hôpital's rule to determine the value of f(0). We found that f(0) = 0, so the correct answer is (A) 0.

Step by step solution

01

Rewrite the given limit with logarithmic properties

First, rewrite the given limit equation with logarithmic properties: \(\lim_{x \rightarrow 0} \left[ f(x) + \ln \left(1-\frac{1}{\mathrm{e}^{f(x)}}\right) - \ln(f(x))\right] = 0\) Using the property: \(\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right)\), we have: \(\lim_{x \rightarrow 0} \left[ \ln \left(\frac{1-\frac{1}{\mathrm{e}^{f(x)}}}{f(x)}\right) + f(x) \right] = 0\)
02

Use exponentiation to simplify the limit equation

Next, we will exponentiate both sides of the equation to eliminate the logarithm: \(\lim_{x \rightarrow 0} \left[ \mathrm{e}^{\ln\left(\frac{1-\frac{1}{\mathrm{e}^{f(x)}}}{f(x)}\right)+f(x)}\right] = 1\) Observe that \(e^{\ln(x)} = x\). This simplifies the equation to: \(\lim_{x \rightarrow 0} \left[\frac{1-\frac{1}{\mathrm{e}^{f(x)}}}{f(x)} \cdot \mathrm{e}^{f(x)}\right] = 1\)
03

Simplify the given equation

To further simplify, we will multiply the numerator and denominator by \(\mathrm{e}^{f(x)}\): \(\lim_{x \rightarrow 0} \left[\frac{1-\frac{1}{\mathrm{e}^{f(x)}}}{f(x)} \cdot \frac{\mathrm{e}^{f(x)}}{\mathrm{e}^{f(x)}}\right] = \mathrm{e}^0\) Therefore, the equation becomes: \(\lim_{x \rightarrow 0} \left[\frac{\mathrm{e}^{f(x)}-1}{f(x)\mathrm{e}^{f(x)}}\right] = 1\)
04

Apply L'Hôpital's rule to the limit equation

Now apply L'Hôpital's rule on the limit when x approaches 0: \(\lim_{x \rightarrow 0} \left[\frac{\frac{\mathrm{d}}{\mathrm{d}x}\left(\mathrm{e}^{f(x)}-1\right)}{\frac{\mathrm{d}}{\mathrm{d}x}(f(x)\mathrm{e}^{f(x)})}\right] = 1\) Evaluate the derivatives: \(\lim_{x \rightarrow 0} \left[\frac{f'(x)\mathrm{e}^{f(x)}}{f'(x)\mathrm{e}^{f(x)}+f(x)f'(x)\mathrm{e}^{f(x)}}\right] = 1\)
05

Simplify the limit equation and solve for f(0)

Cancel out common terms in the numerator and denominator: \(\lim_{x \rightarrow 0} \left[\frac{1}{1+f(x)}\right] = 1\) Since the limit exists and equals 1, we have: \(\frac{1}{1+f(0)} = 1\) Solve for f(0): \(1+f(0)=1\) \(f(0)=0\) So, the correct answer is: (A) 0

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the function \(f(x)=\left(\frac{a x+1}{b x+2}\right)^{x}\) where \(a^{2}+b^{2} \neq 0\) then \(\lim f(x)\) (A) exists for all values of \(a\) and \(b\) (B) is zero for \(\mathrm{a}<\mathrm{b}\) (C) is non existent for \(\mathrm{a}>\mathrm{b}\) (D) is e \({ }^{-\left(\frac{1}{a}\right)}\) or \(e^{-\left(\frac{1}{b}\right)}\) if \(a=b\)

If $\lim _{x \rightarrow \infty}\left(\sqrt{a^{2} x^{2}+a x+1}-\sqrt{a^{2} x^{2}+1}\right)$ $=\mathrm{K} \cdot \lim _{x \rightarrow \infty}(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x})\( then the value of \)\mathrm{K}$ (A) (B) (C) \(2 \mathrm{a}\) (D) None of these

$\lim _{x \rightarrow 0^{+}} \int_{x}^{2 x} \frac{\sin ^{\mathrm{m}} \mathrm{t}}{t^{\mathrm{n}}}(\mathrm{m}, \mathrm{n}, \in \mathrm{N})$ equals (A) 0 if \(m \geq n\) (B) \(\ln 2\) if \(\mathrm{n}-\mathrm{m}=1\) (C) \(+\infty\) if \(n-m=1\) (D) None of these

Assume that \(\lim _{\theta \rightarrow 1} \mathrm{f}(\theta)\) exists and $\frac{\theta^{2}+\theta-2}{\theta+3} \leq \frac{\mathrm{f}(\theta)}{\theta^{2}} \leq \frac{\theta^{2}+2 \theta-1}{\theta+3}$ holds for certain interval containing the point \(\theta=-1\) then $\lim _{\theta \rightarrow 1} \mathrm{f}(\theta)$ (A) is equal to \(\mathrm{f}(-1)\) (B) is equal to 1 (C) is non-existent (D) is equal to \(-1\)

Let \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are non zero constant number then $\lim _{\mathrm{r} \rightarrow \infty} \frac{\cos \frac{\mathrm{a}}{\mathrm{r}}-\cos \frac{\mathrm{b}}{\mathrm{r}} \cos \frac{\mathrm{c}}{\mathrm{r}}}{\sin \frac{\mathrm{b}}{\mathrm{r}} \sin \frac{\mathrm{c}}{\mathrm{r}}}$ equals (A) \(\frac{a^{2}+b^{2}-c^{2}}{2 b c}\) (B) \(\frac{\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{bc}}\) (C) \(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\) (D) independent of \(a, b, c\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free