Chapter 1: Problem 71
The value of $\lim _{n \rightarrow \infty}\left(\frac{n !}{n^{n}}\right)^{\frac{2 n^{\prime}+1}{5 n^{2}+1}}$ is equal to (A) \(]\) (B) 0 (C) \(\left(\frac{1}{\mathrm{e}}\right)^{2 / 5}\) (D) \(\mathrm{e}^{2 / 3}\)
Chapter 1: Problem 71
The value of $\lim _{n \rightarrow \infty}\left(\frac{n !}{n^{n}}\right)^{\frac{2 n^{\prime}+1}{5 n^{2}+1}}$ is equal to (A) \(]\) (B) 0 (C) \(\left(\frac{1}{\mathrm{e}}\right)^{2 / 5}\) (D) \(\mathrm{e}^{2 / 3}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\lim _{x \rightarrow 0} \frac{x^{2 n} \sin ^{n} x}{x^{2 n}-\sin ^{2 n} x}\) is a non zero finite number, then n must be equal to (A) 1 (B) 2 (C) 3 (D) none of these
The function(s) which have a limit as \(\mathrm{n} \rightarrow \infty\) (A) \(\left(\frac{n-1}{n+1}\right)^{2}\) (B) \((-1)^{n}\left(\frac{n-1}{n+1}\right)^{2}\) (C) \(\frac{n^{2}+1}{n}\) (D) \((-1)^{n} \frac{n^{2}+1}{n}\)
$\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{\mathrm{n}}{\mathrm{n}^{2}-2}+\frac{4^{\mathrm{n}}(-1)^{\mathrm{n}}}{2^{\mathrm{n}}-1}\right)^{-1}$ is equal to (A) 2 (B) (C) 0 (D) None of these
The value of the limit $\lim _{n \rightarrow \infty} \mathrm{n}^{2}(\sqrt[n]{a}-\sqrt[n+1]{a})(a>0)$ is (A) \(\ell\) n a (B) \(\mathrm{e}^{\mathrm{a}}\) (C) \(\mathrm{e}^{-\mathrm{a}}\) (D) none of these
The value of $\lim _{\mathrm{x} \rightarrow 1}\left(\frac{\mathrm{x}^{3}+2 \mathrm{x}^{2}+\mathrm{x}+1}{\mathrm{x}^{2}+2 \mathrm{x}+3}\right)^{\frac{1-\cos (\mathrm{x}-1)}{(\mathrm{x}-1)^{2}}}$ is (A) e (B) \(\mathrm{e}^{1 / 2}\) (C) 1 (D) none of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.