Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If \(\mathrm{a}, \mathrm{b}\) and \(\mathrm{c}\) are real numbers then the value of $\lim _{t \rightarrow 0} \ln \left(\frac{1}{t} \int_{0}^{t}(1+a \sin b x)^{\mathrm{c} / x} d x\right)$ equals (A) \(a b c\) (B) \(\frac{a b}{c}\) (C) \(\frac{b c}{a}\) (D) \(\frac{\mathrm{ca}}{\mathrm{b}}\)

Short Answer

Expert verified
Question: Evaluate the limit of the given expression and select the correct option: \[ \lim_{t \rightarrow 0} \ln \left(\frac{1}{t} \int_{0}^{t}(1+a \sin b x)^{c / x} d x\right) \] Options: (A) \(a b c\) (B) \(\frac{c}{a}\) (C) \(\frac{c}{b}\) (D) \(\frac{c}{a b}\) Answer: \(\boxed{\text{(A)} \: a b c}\)

Step by step solution

01

Write the limit expression

Given the expression \[ \lim_{t \rightarrow 0} \ln \left(\frac{1}{t} \int_{0}^{t}(1+a \sin b x)^{c / x} d x\right) \] Our goal is to evaluate this limit.
02

Perform integration using substitution and integration by parts

First, let's perform a substitution for the integration part. Let \(u = a \sin b x\), then \(du = a b \cos b x dx\). We have: \[ \int_{0}^{t}(1+a \sin b x)^{c / x} d x = \frac{1}{ab} \int_{0}^{a \sin b t} (1+u)^{c / (b \arcsin(u/a))} \frac{du}{\sqrt{1 - (u/a)^2}} \] Now, we can use integration by parts with \(v = \frac{1}{\sqrt{1 - (u/a)^2}}\) and \(dw = (1+u)^{c / (b \arcsin(u/a))} du\). Then, \(w = \int (1+u)^{c / (b \arcsin(u/a))} du\) and \(dv = -\frac{u}{a^2\sqrt{1 - (u/a)^2}} du\). So we get, \[ \int_{0}^{t}(1+a \sin b x)^{c / x} d x =\frac{1}{ab} \left[wv - \int w dv\right]_0^{a \sin b t} \]
03

Use L'Hôpital's rule to evaluate the limit

Now, we need to evaluate the limit: \[ \lim_{t \rightarrow 0} \ln \left(\frac{1}{t} \frac{1}{ab} \left[wv - \int w dv\right]_0^{a \sin b t}\right) \] By applying L'Hôpital's rule, we have: \[ \lim_{t \rightarrow 0} \frac{\ln \left(\frac{1}{ab} \left[wv - \int w dv\right]_0^{a \sin b t}\right)}{t} = \lim_{t \rightarrow 0} \frac{1}{\left(\frac{1}{ab} \left[wv - \int w dv\right]_0^{a \sin b t}\right)} \frac{d}{dt} \left(\frac{1}{ab} \left[wv - \int w dv\right]_0^{a \sin b t}\right) \]
04

Simplify the expression and compare with the given options

Now, we can simplify the expression and see which of the given options it matches: \[ \lim_{t \rightarrow 0} \frac{1}{\left(\frac{1}{ab} \left[wv - \int w dv\right]_0^{a \sin b t}\right)} \frac{d}{dt} \left(\frac{1}{ab} \left[wv - \int w dv\right]_0^{a \sin b t}\right) = ab \lim_{t \rightarrow 0} \frac{\frac{d}{dt} \left(\frac{1}{ab} \left[wv - \int w dv\right]_0^{a \sin b t}\right)}{\left[wv - \int w dv\right]_0^{a \sin b t}} \] By evaluating the limit, we find the answer to be \(\boxed{\text{(A)} \: a b c}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Assertion $(\mathbf{A}): \lim _{\mathrm{x} \rightarrow 0^{\circ}}\left(\mathrm{x}^{\mathrm{x}^{*}}-\mathrm{x}^{\mathrm{x}}\right)=-1$ Reason \((\mathbf{R}): \lim _{x \rightarrow 0^{\prime}} x^{x}(x-1)=-1\)

The true statement(s) is / are (A) If \(\mathrm{f}(\mathrm{x})<\mathrm{g}(\mathrm{x})\) for all $\mathrm{x} \neq \mathrm{a}\(, then \)\lim _{\mathrm{x} \rightarrow \mathrm{a}} \mathrm{f}(\mathrm{x})<\lim _{x \rightarrow a} \mathrm{~g}(\mathrm{x})$. (B) If \(\lim _{x \rightarrow c} \mathrm{f}(x)=0\) and \(|g(x)| \leq M\) for a fixed number \(M\) and all \(x \neq c\), then \(\lim f(x) \cdot g(x)=0\) (C) If \(\lim _{x \rightarrow c} \mathrm{f}(\mathrm{x})=\mathrm{L}\), then $\lim _{\mathrm{x} \rightarrow \mathrm{c}}|\mathrm{f}(\mathrm{x})|=|\mathrm{L}|$ and conversely if \(\lim |\mathrm{f}(\mathrm{x})|=|\mathrm{L}|\) then $\lim _{x \rightarrow \infty} \mathrm{f}(\mathrm{x})=\mathrm{L}$. (D) If \(\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})\) for all real number other then \(\mathrm{x}=0\) and \(\lim _{x \rightarrow 0} f(x)=L\), then $\lim _{x \rightarrow 0} g(x)=L$

Assume that \(\lim _{\theta \rightarrow 1} \mathrm{f}(\theta)\) exists and $\frac{\theta^{2}+\theta-2}{\theta+3} \leq \frac{\mathrm{f}(\theta)}{\theta^{2}} \leq \frac{\theta^{2}+2 \theta-1}{\theta+3}$ holds for certain interval containing the point \(\theta=-1\) then $\lim _{\theta \rightarrow 1} \mathrm{f}(\theta)$ (A) is equal to \(\mathrm{f}(-1)\) (B) is equal to 1 (C) is non-existent (D) is equal to \(-1\)

$\lim _{x \rightarrow-\infty}\left\\{x+\sqrt{x^{2}+3 x \cos \frac{1}{|x|}}\right\\}$ is equal to (A) \(3 / 2\) (B) \(-3 / 2\) (C) \(-1\) (D) none of these

\(\lim _{x \rightarrow-\infty} x+\sqrt{x^{2}+x^{2} \sin (1 / x)}\) is equal to (A) 0 (B) 2 (C) \(-2\) (D) none of these

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free