Chapter 1: Problem 66
If \(\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \sin x^{2} d x}{x^{n}}\) is a non zero definite number, then value of \(\mathrm{n}\) is (A) 1 (B) 3 (C) 5 (D) 4
Chapter 1: Problem 66
If \(\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \sin x^{2} d x}{x^{n}}\) is a non zero definite number, then value of \(\mathrm{n}\) is (A) 1 (B) 3 (C) 5 (D) 4
All the tools & learning materials you need for study success - in one app.
Get started for freeLet $\mathrm{f}(\mathrm{x})=\left[\begin{array}{ll}\mathrm{mx}^{2}+\mathrm{n} & \text { for } \quad \mathrm{x}<0 \\ \mathrm{n} x+\mathrm{m} & \text { for } 0 \leq \mathrm{x} \leq 1 \\ \mathrm{n} \mathrm{x}^{3}+\mathrm{m} & \text { for } \quad \mathrm{x}>1\end{array}\right.\( where \)\mathrm{m}, \mathrm{n} \in \mathrm{R}$ then which of the following must be correct (A) \(\lim _{x \rightarrow 0} f(x)\) exist for all values of \(m\) and \(n\). (B) \(\lim _{x \rightarrow 0} f(x)\) exists only if \(m=n\). (C) \(\lim _{x \rightarrow 0} f(x)\) exists for all values of \(m\) and \(n\). (D) \(\lim _{x \rightarrow 1} f(x)\) exists for no values of \(m\) and \(n\).
The value of $\lim _{n \rightarrow \infty}\left(\frac{n !}{n^{n}}\right)^{\frac{2 n^{\prime}+1}{5 n^{2}+1}}$ is equal to (A) \(]\) (B) 0 (C) \(\left(\frac{1}{\mathrm{e}}\right)^{2 / 5}\) (D) \(\mathrm{e}^{2 / 3}\)
$\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n]{p}+\sqrt[n]{q}}{2}\right)^{n}\(, p, \)q>0$ is equal to (A) 1 (B) \(\sqrt{\mathrm{pq}}\) (C) pq (D) \(\frac{\mathrm{pq}}{2}\)
$\lim _{n \rightarrow \infty}\left(\frac{n !}{(m n)^{n}}\right)^{1 / n}(m \in N)$ is equal to (A) \(1 / \mathrm{em}\) (B) \(\mathrm{m} / \mathrm{e}\) (C) em (D) \(\mathrm{e} / \mathrm{m}\)
Let \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are non zero constant number then $\lim _{\mathrm{r} \rightarrow \infty} \frac{\cos \frac{\mathrm{a}}{\mathrm{r}}-\cos \frac{\mathrm{b}}{\mathrm{r}} \cos \frac{\mathrm{c}}{\mathrm{r}}}{\sin \frac{\mathrm{b}}{\mathrm{r}} \sin \frac{\mathrm{c}}{\mathrm{r}}}$ equals (A) \(\frac{a^{2}+b^{2}-c^{2}}{2 b c}\) (B) \(\frac{\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{bc}}\) (C) \(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\) (D) independent of \(a, b, c\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.