Chapter 1: Problem 65
$\lim _{n \rightarrow \infty} \frac{1 . n+(n-1)(1+2)+(n-2)(1+2+3)+. .1 \cdot \sum_{r=1}^{n} r}{n^{4}}$ is equal to (A) \(1 / 12\) (B) \(1 / 24\) (C) \(1 / 6\) (D) \(1 / 48\)
Chapter 1: Problem 65
$\lim _{n \rightarrow \infty} \frac{1 . n+(n-1)(1+2)+(n-2)(1+2+3)+. .1 \cdot \sum_{r=1}^{n} r}{n^{4}}$ is equal to (A) \(1 / 12\) (B) \(1 / 24\) (C) \(1 / 6\) (D) \(1 / 48\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{f}(\mathrm{x})\) be defined for all \(\mathrm{x} \in \mathrm{R}\) such that $\lim _{x \rightarrow 0}\left[f(x)+\ln \left(1-\frac{1}{\mathrm{e}^{f(x)}}\right)-\ln (f(x))\right]=0$ then \(\mathrm{f}(0)\) is (A) 0 (B) 1 (C) 2 (D) 3
$\lim _{x \rightarrow \infty}\left(1+a^{2}\right)^{x} \cdot \frac{b}{\left(1+a^{2}\right)^{x}}\( is \)(a, b \in R)$ (A) \(\sqrt{b}\) (B) b (C) \(\mathrm{b}^{2}\) (D) none of these
In which one of the following cases, limit tends to e (A) \(\lim _{x \rightarrow 1} x^{\frac{1}{x-1}}\) (B) \(\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}\) (C) \(\lim _{x \rightarrow \infty}\left(\frac{x+4}{x+2}\right)^{x+3}\) (D) \(\lim _{x \rightarrow \infty}(1+f(x))^{\frac{1}{f(x)}}\) when $\lim _{x \rightarrow \infty} f(x) \rightarrow 0$
Let $\mathrm{f}(\mathrm{x})=\left[\begin{array}{ll}\mathrm{mx}^{2}+\mathrm{n} & \text { for } \quad \mathrm{x}<0 \\ \mathrm{n} x+\mathrm{m} & \text { for } 0 \leq \mathrm{x} \leq 1 \\ \mathrm{n} \mathrm{x}^{3}+\mathrm{m} & \text { for } \quad \mathrm{x}>1\end{array}\right.\( where \)\mathrm{m}, \mathrm{n} \in \mathrm{R}$ then which of the following must be correct (A) \(\lim _{x \rightarrow 0} f(x)\) exist for all values of \(m\) and \(n\). (B) \(\lim _{x \rightarrow 0} f(x)\) exists only if \(m=n\). (C) \(\lim _{x \rightarrow 0} f(x)\) exists for all values of \(m\) and \(n\). (D) \(\lim _{x \rightarrow 1} f(x)\) exists for no values of \(m\) and \(n\).
The value of $\lim _{x \rightarrow 0} \frac{(\tan (\\{x\\}-1)) \sin \\{x\\}}{\\{x\\}(\\{x\\}-1)}\(, where \)\\{x\\}$ denotes the fractional part function, is (A) is 1 (B) is tan 1 (C) is \(\sin 1\) (D) is non-existent
What do you think about this solution?
We value your feedback to improve our textbook solutions.