Chapter 1: Problem 63
\(\lim _{x \rightarrow \infty} \sqrt[x]{2 \sum_{n=0}^{x} \frac{x^{n}}{n !}}\) is equal to (A) (B) \(\mathrm{e}\) (C) \(2 \mathrm{e}^{-1}\) (D) 0
Chapter 1: Problem 63
\(\lim _{x \rightarrow \infty} \sqrt[x]{2 \sum_{n=0}^{x} \frac{x^{n}}{n !}}\) is equal to (A) (B) \(\mathrm{e}\) (C) \(2 \mathrm{e}^{-1}\) (D) 0
All the tools & learning materials you need for study success - in one app.
Get started for freeGive a real valued function \(\mathrm{f}\) such that $f(x)=\left\\{\begin{array}{cll}\frac{\tan ^{2} x}{\left(x^{2}-[x]\right)^{2}} & \text { for } & x>0 \\ 1 & \text { for } & x=0 \\ \sqrt{\\{x\\} \cot \\{x\\}} & \text { for } & x<0\end{array}\right.$ where, [.] is the integral part and \\{\\} is the fractional part of \(\mathrm{x}\), then (A) \(\lim _{x \rightarrow 0} f(x)=1\) (B) \(\lim _{x \rightarrow 0^{-}} f(x)=\cot 1\) (C) \(\cot ^{-1}\left(\lim _{x \rightarrow 0^{-}} f(x)\right)^{2}=1\) (D) none of these
The number of points of where limit of \(\mathrm{f}(\mathrm{x})\) does not exist is : (A) 3 (B) 4 (C) 5 (D) None of these
Assertion $(\mathbf{A}): \lim _{\mathrm{x} \rightarrow 0^{\circ}}\left(\mathrm{x}^{\mathrm{x}^{*}}-\mathrm{x}^{\mathrm{x}}\right)=-1$ Reason \((\mathbf{R}): \lim _{x \rightarrow 0^{\prime}} x^{x}(x-1)=-1\)
The true statement(s) is / are (A) If \(\mathrm{f}(\mathrm{x})<\mathrm{g}(\mathrm{x})\) for all $\mathrm{x} \neq \mathrm{a}\(, then \)\lim _{\mathrm{x} \rightarrow \mathrm{a}} \mathrm{f}(\mathrm{x})<\lim _{x \rightarrow a} \mathrm{~g}(\mathrm{x})$. (B) If \(\lim _{x \rightarrow c} \mathrm{f}(x)=0\) and \(|g(x)| \leq M\) for a fixed number \(M\) and all \(x \neq c\), then \(\lim f(x) \cdot g(x)=0\) (C) If \(\lim _{x \rightarrow c} \mathrm{f}(\mathrm{x})=\mathrm{L}\), then $\lim _{\mathrm{x} \rightarrow \mathrm{c}}|\mathrm{f}(\mathrm{x})|=|\mathrm{L}|$ and conversely if \(\lim |\mathrm{f}(\mathrm{x})|=|\mathrm{L}|\) then $\lim _{x \rightarrow \infty} \mathrm{f}(\mathrm{x})=\mathrm{L}$. (D) If \(\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})\) for all real number other then \(\mathrm{x}=0\) and \(\lim _{x \rightarrow 0} f(x)=L\), then $\lim _{x \rightarrow 0} g(x)=L$
The function(s) which have a limit as \(\mathrm{n} \rightarrow \infty\) (A) \(\left(\frac{n-1}{n+1}\right)^{2}\) (B) \((-1)^{n}\left(\frac{n-1}{n+1}\right)^{2}\) (C) \(\frac{n^{2}+1}{n}\) (D) \((-1)^{n} \frac{n^{2}+1}{n}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.