Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(\lim _{x \rightarrow \infty} \sqrt[x]{2 \sum_{n=0}^{x} \frac{x^{n}}{n !}}\) is equal to (A) (B) \(\mathrm{e}\) (C) \(2 \mathrm{e}^{-1}\) (D) 0

Short Answer

Expert verified
Question: Evaluate the limit - \(\lim _{x \rightarrow \infty} \sqrt[x]{2 \sum_{n=0}^{x} \frac{x^{n}}{n !}}\). Answer: (B) \(\mathrm{e}\).

Step by step solution

01

Recall the Taylor series expansion of the exponential function

The Taylor series expansion for \(e^{x}\) is given by \(\sum_{n=0}^{\infty} \frac{x^n}{n!}\). We will use this to help evaluate the given limit.
02

Rewrite the summand using the Taylor series

Divide the summand by \(x^n\) on each side: \(\frac{2 \sum_{n=0}^{x} \frac{x^{n}}{n!}}{x^x}=\frac{2}{x^x}\sum_{n=0}^x \frac{x^n}{n!}\).
03

Use the relationship between the Taylor series and the exponential function

Since we have the sum up to x terms, consider the remaining infinite terms as y and get the complete expression for e^x: \(\frac{2}{x^x}\sum_{n=0}^x \frac{x^n}{n!} \implies \frac{2}{x^x}(e^x - y)\).
04

Rewrite the expression to calculate the limit

In order to find the limit, rewrite the expression as: \(\sqrt[x]{2(e^x - y)}\).
05

Apply the limit to the expression

Now, evaluate the limit: \(\lim_{x\rightarrow\infty}\sqrt[x]{2(e^x - y)}\). As x tends to infinity, the term y becomes negligible, therefore: \(\lim_{x\rightarrow\infty}\sqrt[x]{2(e^x - y)} \approx \lim_{x\rightarrow\infty}\sqrt[x]{2e^x}\).
06

Simplify the expression and evaluate the limit

Rewrite the expression: \(\lim_{x\rightarrow\infty}\sqrt[x]{2e^x}=\lim_{x\rightarrow\infty}(2e^x)^{\frac{1}{x}}\). Since the exponent is a fraction, we can write the expression as \(\lim_{x\rightarrow\infty}2^{1/x}e\), and the limit becomes: \(\lim_{x\rightarrow\infty}2^{1/x}e\). As x approaches infinity, \(2^{1/x}\) approaches 1, and therefore: \(\lim_{x\rightarrow\infty}2^{1/x}e = 1 \cdot e=e\). The correct answer is (B) \(\mathrm{e}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Give a real valued function \(\mathrm{f}\) such that $f(x)=\left\\{\begin{array}{cll}\frac{\tan ^{2} x}{\left(x^{2}-[x]\right)^{2}} & \text { for } & x>0 \\ 1 & \text { for } & x=0 \\ \sqrt{\\{x\\} \cot \\{x\\}} & \text { for } & x<0\end{array}\right.$ where, [.] is the integral part and \\{\\} is the fractional part of \(\mathrm{x}\), then (A) \(\lim _{x \rightarrow 0} f(x)=1\) (B) \(\lim _{x \rightarrow 0^{-}} f(x)=\cot 1\) (C) \(\cot ^{-1}\left(\lim _{x \rightarrow 0^{-}} f(x)\right)^{2}=1\) (D) none of these

The number of points of where limit of \(\mathrm{f}(\mathrm{x})\) does not exist is : (A) 3 (B) 4 (C) 5 (D) None of these

Assertion $(\mathbf{A}): \lim _{\mathrm{x} \rightarrow 0^{\circ}}\left(\mathrm{x}^{\mathrm{x}^{*}}-\mathrm{x}^{\mathrm{x}}\right)=-1$ Reason \((\mathbf{R}): \lim _{x \rightarrow 0^{\prime}} x^{x}(x-1)=-1\)

The true statement(s) is / are (A) If \(\mathrm{f}(\mathrm{x})<\mathrm{g}(\mathrm{x})\) for all $\mathrm{x} \neq \mathrm{a}\(, then \)\lim _{\mathrm{x} \rightarrow \mathrm{a}} \mathrm{f}(\mathrm{x})<\lim _{x \rightarrow a} \mathrm{~g}(\mathrm{x})$. (B) If \(\lim _{x \rightarrow c} \mathrm{f}(x)=0\) and \(|g(x)| \leq M\) for a fixed number \(M\) and all \(x \neq c\), then \(\lim f(x) \cdot g(x)=0\) (C) If \(\lim _{x \rightarrow c} \mathrm{f}(\mathrm{x})=\mathrm{L}\), then $\lim _{\mathrm{x} \rightarrow \mathrm{c}}|\mathrm{f}(\mathrm{x})|=|\mathrm{L}|$ and conversely if \(\lim |\mathrm{f}(\mathrm{x})|=|\mathrm{L}|\) then $\lim _{x \rightarrow \infty} \mathrm{f}(\mathrm{x})=\mathrm{L}$. (D) If \(\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})\) for all real number other then \(\mathrm{x}=0\) and \(\lim _{x \rightarrow 0} f(x)=L\), then $\lim _{x \rightarrow 0} g(x)=L$

The function(s) which have a limit as \(\mathrm{n} \rightarrow \infty\) (A) \(\left(\frac{n-1}{n+1}\right)^{2}\) (B) \((-1)^{n}\left(\frac{n-1}{n+1}\right)^{2}\) (C) \(\frac{n^{2}+1}{n}\) (D) \((-1)^{n} \frac{n^{2}+1}{n}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free