Chapter 1: Problem 62
$\lim _{x \rightarrow \pi / 2} \frac{\sin x-(\sin x)^{\sin x}}{1-\sin x \ln \sin x}$ is equal to (A) 1 (B) zero (C) 2 (D) \(2 / 3\)
Chapter 1: Problem 62
$\lim _{x \rightarrow \pi / 2} \frac{\sin x-(\sin x)^{\sin x}}{1-\sin x \ln \sin x}$ is equal to (A) 1 (B) zero (C) 2 (D) \(2 / 3\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\lim _{x \rightarrow 0}\left\\{(1+x)^{\frac{2}{x}}\right\\}\) (where \(\\{x\\}\) denotes the fractional part of \(\mathrm{x}\) ) is equal to (A) \(\mathrm{e}^{2}-7\) (B) \(e^{2}-8\) (C) \(\mathrm{e}^{2}-6\) (D) None of these
Suppose that a and \(\mathrm{b}\) are real positive numbers then the value of \(\lim _{t \rightarrow 0}\left(\frac{b^{t+1}-a^{t+1}}{b-a}\right)^{1 / t}\) has the value equals to (A) $\frac{\mathrm{a} \ln \mathrm{b}-\mathrm{b} \ln \mathrm{a}}{\mathrm{b}-\mathrm{a}}$ (B) $\frac{\mathrm{b} \ln \mathrm{b}-\mathrm{a} \ln \mathrm{a}}{\mathrm{b}-\mathrm{a}}$ (C) \(\mathrm{b} \ln \mathrm{b}-\mathrm{a} \ln \mathrm{a}\) (D) \(\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}}\)
$\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+\tan ^{-1} 3 x}-\sqrt[3]{1-\sin ^{-1} 3 x}}{\sqrt{1-\sin ^{-1} 2 x}-\sqrt{1+\tan ^{-1} 2 x}}$ is equal to (A) 1 (B) \(-1\) (C) 2 (D) None
\(\lim _{x \rightarrow \infty} \sqrt[x]{2 \sum_{n=0}^{x} \frac{x^{n}}{n !}}\) is equal to (A) (B) \(\mathrm{e}\) (C) \(2 \mathrm{e}^{-1}\) (D) 0
Let $\mathrm{P}(\mathrm{x})=\mathrm{a}_{1} \mathrm{x}+\mathrm{a}_{2} \mathrm{x}^{2}+\mathrm{a}_{3} \mathrm{x}^{3}+\ldots \ldots .+\mathrm{a}_{100} \mathrm{x}^{100}\(, where \)\mathrm{a}_{1}=$ 1 and \(a_{i} \in R \forall i=2,3,4, \ldots, 100\) then \(\lim _{x \rightarrow 0} \frac{\sqrt[100]{1+P(x)}-1}{x}\) has the value equal to (A) 100 (B) \(\frac{1}{100}\) (C) 1 (D) 5050
What do you think about this solution?
We value your feedback to improve our textbook solutions.