Chapter 1: Problem 61
If $\lim _{x \rightarrow \infty} \frac{729^{x}-243^{x}-81^{x}+9^{x}+3^{x}-1}{x^{3}}=k(\ln 3)^{3}\(, then \)k$ is equal to (A) 4 (B) 5 (C) 6 (D) none
Chapter 1: Problem 61
If $\lim _{x \rightarrow \infty} \frac{729^{x}-243^{x}-81^{x}+9^{x}+3^{x}-1}{x^{3}}=k(\ln 3)^{3}\(, then \)k$ is equal to (A) 4 (B) 5 (C) 6 (D) none
All the tools & learning materials you need for study success - in one app.
Get started for free\(\mathrm{A}_{0}\) is an equilateral triangle of unit area, \(\mathrm{A}_{0}\) is divided into four equal parts, each an equilateral triangle, by joining the mid points of the sides of \(\mathrm{A}_{0}\). The central triangle is removed. Treating the remaining three triangles in the same way of division as was done to \(\mathrm{A}_{0}\), and this process is repeated \(\mathrm{n}\) times. The sum of the area of the triangles removed in \(\mathrm{S}_{\mathrm{n}}\) then $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{S}_{\mathrm{n}}$ is (A) \(1 / 2\) (B) 1 (C) \(-1\) (D) 2
\(\lim _{n \rightarrow \infty}\left(\sum_{r=1}^{m} r^{n}\right)^{1 / n}\) is equal to, \((n \in N)\) (A) \(\mathrm{m}\) (B) \(\mathrm{m} / 2\) (C) \(\mathrm{e}^{\mathrm{m}}\) (D) \(\mathrm{e}^{\mathrm{m} 2}\)
Let \(l_{1}=\lim _{x \rightarrow \infty} \sqrt{\frac{x-\cos ^{2} x}{x+\sin x}}\) and $l_{2}=\lim _{\mathrm{h} \rightarrow 0^{-}} \int_{-1}^{1} \frac{\mathrm{h} \mathrm{dx}}{\mathrm{h}^{2}+\mathrm{x}^{2}} .$ Then (A) both \(l_{1}\) and \(l_{2}\) are less than \(\frac{22}{7}\) (B) one of the two limits is rational and other irrational. (C) \(l_{2}>l_{1}\) (D) \(l_{2}\) is greater than 3 times of \(l_{1}\).
The value of $\lim _{\mathrm{x} \rightarrow 0}\left[\frac{|\sin \mathrm{x}|}{|\mathrm{x}|}\right]$, (where [.] denotes greatest integer function) is (A) 0 (B) does not exists (C) \(-1\) (D) 1
The true statement(s) is / are (A) If \(\lim _{x \rightarrow c} \mathrm{f}(\mathrm{x})=0\), then there must exist a number \(\mathrm{d}\) such that \(\mathrm{f}(\mathrm{d})<0.001\) (B) \(\lim _{x \rightarrow c} f(x)=L\), is equivalent to $\lim _{x \rightarrow c}(f(x)-L)=0$. (C) \(\lim _{x \rightarrow a}(f(x)+g(x))\) may exist even if the limits $\lim _{x \rightarrow i}$ \(\left(\mathrm{f}(\mathrm{x})\right.\) and $\lim _{\mathrm{x} \rightarrow \mathrm{a}}(\mathrm{g}(\mathrm{x})$ do not exist. (D) If \(\lim _{x \rightarrow a} f(x)\) exists and $\lim _{x \rightarrow a}(f(x)+g(x))$ does not exist, then \(\lim _{x \rightarrow a} g(x)\) does not exist.
What do you think about this solution?
We value your feedback to improve our textbook solutions.