Chapter 1: Problem 60
$\sum_{r=1}^{\infty} \frac{r^{3}+\left(r^{2}+1\right)^{2}}{\left(r^{4}+r^{2}+1\right)\left(r^{2}+r\right)}$ is equal to (A) \(3 / 2\) (B) 1 (C) 2 (D) infinite
Chapter 1: Problem 60
$\sum_{r=1}^{\infty} \frac{r^{3}+\left(r^{2}+1\right)^{2}}{\left(r^{4}+r^{2}+1\right)\left(r^{2}+r\right)}$ is equal to (A) \(3 / 2\) (B) 1 (C) 2 (D) infinite
All the tools & learning materials you need for study success - in one app.
Get started for free\(\lim _{x \rightarrow 1} \frac{\tan (x-1) \cdot \log _{e} x^{x-1}}{|x-1|^{3}}\) is equal to (A) 1 (B) \(-1\) (C) 3 (D) None of these
If $\mathrm{f}(\mathrm{x})=\left\\{\begin{array}{cl}\frac{\sin ([\mathrm{x}]+2 \mathrm{x})}{[\mathrm{x}]} & \text { if }[\mathrm{x}] \neq 0 \\ 0 & \text { if }[\mathrm{x}]=0\end{array}\right.\(, where \)[.]$ denotes the greatest integer function, then \(\lim _{x \rightarrow 0} f(x)\) is (A) 0 (B) 1 (C) \(-1\) (D) none of these
$\lim _{x \rightarrow 1} \frac{(\ell n(1+x)-\ell \operatorname{n} 2)\left(3.4^{x-1}-3 x\right)}{\left[(7+x)^{1 / 3}-(1+3 x)^{1 / 2}\right] \cdot \sin (x-1)}$ equals (A) \(\frac{9}{4}\) en \(\frac{4}{\mathrm{e}}\) (B) \(\frac{9}{4}\) en \(\frac{\mathrm{e}}{4}\) (C) \(\frac{4}{9} \ell \mathrm{n} \frac{\mathrm{e}}{4}\) (D) None of these
Consider the function \(f(x)=\cos ^{-1}[\cot x]\) where [ ] indicates greatest integer function. Assertion (A): \(\lim _{x \rightarrow \frac{\pi}{2}} f(x)\) exists Reason \((\mathbf{R}):\) Both \(\lim \mathrm{f}(\mathrm{x})\) and $\lim \mathrm{f}(\mathrm{x})$ are finite. \(x \rightarrow \frac{\pi}{2} \quad x \rightarrow \frac{\pi}{2}\)
$\lim _{x \rightarrow 0} \frac{\ell n\left(1+x+x^{2}\right)+\ell n\left(1-x+x^{2}\right)}{\sec x-\cos x}$ is equal to (A) 1 (B) \(-1\) (C) 0 (D) \(\infty\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.