Chapter 1: Problem 58
$\lim _{\mathrm{n} \rightarrow \infty}\left\\{\frac{7}{10}+\frac{29}{10^{2}}+\frac{133}{10^{3}}+\ldots . .+\frac{5^{\mathrm{n}}+2^{\mathrm{n}}}{10^{\mathrm{n}}}\right\\}$ equals (A) \(3 / 4\) (B) 2 (C) \(5 / 4\) (D) \(1 / 2\)
Chapter 1: Problem 58
$\lim _{\mathrm{n} \rightarrow \infty}\left\\{\frac{7}{10}+\frac{29}{10^{2}}+\frac{133}{10^{3}}+\ldots . .+\frac{5^{\mathrm{n}}+2^{\mathrm{n}}}{10^{\mathrm{n}}}\right\\}$ equals (A) \(3 / 4\) (B) 2 (C) \(5 / 4\) (D) \(1 / 2\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{b}<0, \mathrm{~b} \neq-1\) and a is a positive constant then $\lim _{x \rightarrow-\infty} \frac{a+x}{|x|-\sqrt{b^{2} x^{2}+x}}$ equals (A) \(\frac{1}{|b|-1}\) (B) \(\frac{1}{-b-1}\) (C) \(\frac{1}{b-1}\) (D) \(\frac{1}{1-|\mathrm{b}|}\)
$\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n]{p}+\sqrt[n]{q}}{2}\right)^{n}\(, p, \)q>0$ is equal to (A) 1 (B) \(\sqrt{\mathrm{pq}}\) (C) pq (D) \(\frac{\mathrm{pq}}{2}\)
For which of the following functions, Approx \(\mathrm{f}(\mathrm{x})\) exists : (A) \(\underset{x \rightarrow 1}{\text { Approx }} \frac{x^{2}-1}{|x-1|}\) (B) Approx \(\frac{2\\{x\\}-4}{[x]-3}\) (C) $\underset{x \rightarrow 0}{\operatorname{Approx}} \frac{1}{2-2^{\frac{1}{x}}}$ (D) None of these
$\lim _{x \rightarrow 0} \frac{\int_{\sqrt{x}}^{x^{2}} \tan ^{-1}\left(\frac{t^{2}}{1+t^{2}}\right) \text { dt }}{\sin 2 x}$ is equal to (A) 0 (B) 1 (C) \(1 / 2\) (D) does not exist
Give a real valued function \(\mathrm{f}\) such that $f(x)=\left\\{\begin{array}{cll}\frac{\tan ^{2} x}{\left(x^{2}-[x]\right)^{2}} & \text { for } & x>0 \\ 1 & \text { for } & x=0 \\ \sqrt{\\{x\\} \cot \\{x\\}} & \text { for } & x<0\end{array}\right.$ where, [.] is the integral part and \\{\\} is the fractional part of \(\mathrm{x}\), then (A) \(\lim _{x \rightarrow 0} f(x)=1\) (B) \(\lim _{x \rightarrow 0^{-}} f(x)=\cot 1\) (C) \(\cot ^{-1}\left(\lim _{x \rightarrow 0^{-}} f(x)\right)^{2}=1\) (D) none of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.