Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The value of $\lim _{\mathrm{x} \rightarrow 1}\left(\frac{\mathrm{x}^{3}+2 \mathrm{x}^{2}+\mathrm{x}+1}{\mathrm{x}^{2}+2 \mathrm{x}+3}\right)^{\frac{1-\cos (\mathrm{x}-1)}{(\mathrm{x}-1)^{2}}}$ is (A) e (B) \(\mathrm{e}^{1 / 2}\) (C) 1 (D) none of these

Short Answer

Expert verified
Question: Determine the limit of the given expression: \(\lim_{x\to1}\left(\frac{x^{3}+2x^{2}+x+1}{x^{2}+2x+3}\right)^{\frac{1-\cos(x-1)}{(x-1)^2}}\) Answer: (B) \(\left(\frac{5}{6}\right)^{\frac{1}{2}}\)

Step by step solution

01

Find the limit of the function inside the parentheses

We have \(\lim _{x \rightarrow 1}\left(\frac{x^{3}+2x^{2}+x+1}{x^{2}+2x+3}\right)\). We can substitute x = 1 into the expression and simplify: \(\frac{1^{3}+2(1)^{2}+1+1}{1^{2}+2(1)+3}=\frac{1+2+1+1}{1+2+3}=\frac{5}{6}\) So, the limit of the function inside the parentheses as x approaches 1 is \(\frac{5}{6}\).
02

Find the limit of the exponent

The given exponent is \(\frac{1 - \cos(x-1)}{(x-1)^2}\). Let \(u = x - 1\). Then as \(x \to 1\), \(u \to 0\). Therefore, we have: \(\lim_{x\to1}\frac{1 - \cos(x-1)}{(x-1)^2} = \lim_{u\to0}\frac{1 - \cos(u)}{u^2}\) The standard limit \(\lim_{u\to0}\frac{1 - \cos(u)}{u^2} = \frac{1}{2}\) is a known result. So, the limit of the exponent as x approaches 1 is \(\frac{1}{2}\).
03

Use the limit laws to find the limit of the given expression

Using the limit laws, we can find the limit of the given expression: \(\lim_{x\to1}\left(\frac{x^{3}+2x^{2}+x+1}{x^{2}+2x+3}\right)^{\frac{1-\cos(x-1)}{(x-1)^2}}\) \(=\left(\lim_{x\to1}\frac{x^{3}+2x^{2}+x+1}{x^{2}+2x+3}\right)^{\lim_{x\to1}\frac{1-\cos(x-1)}{(x-1)^2}}\) \(= \left(\frac{5}{6}\right)^{\frac{1}{2}}\) So, the limit of the given expression is \(\left(\frac{5}{6}\right)^{\frac{1}{2}}\), which matches option (B) \(\mathrm{e}^{1 / 2}\) as the final answer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If $\mathrm{f}(\mathrm{x})=\lim _{\mathrm{n} \rightarrow \infty} \frac{2 \mathrm{x}}{\pi} \tan ^{-1} \mathrm{nx}\(, then value of \)\lim _{\mathrm{x} \rightarrow 0}[\mathrm{f}(\mathrm{x})-1]$ is, where [.] represents greatest integer function (A) 0 (B) \(-1\) (C) 1 (D) does not exist

The value of $\lim _{n \rightarrow \infty} \frac{1^{6}+2^{6}+3^{6} \ldots \ldots . n^{6}}{\left(1^{2}+2^{2}+3^{2} \ldots \ldots n^{2}\right)\left(1^{3}+2^{3}+3^{3}+\ldots \ldots . n^{3}\right)}$ (A) \(\frac{14}{7}\) (B) \(\frac{21}{8}\) (C) \(\frac{132}{17}\) (D) \(\frac{12}{7}\)

Column - I (A) $\lim _{n \rightarrow \infty} \cos ^{2}\left(\pi\left(\sqrt[3]{n^{3}+n^{2}+2 n}\right)\right)\( where \)n$ is an integer, equals. (B) $\lim _{n \rightarrow \infty} \mathrm{n} \sin \left(2 \pi \sqrt{1+\mathrm{n}^{2}}\right)(\mathrm{n} \in \mathrm{N})$ equals. (C) $\lim _{n \rightarrow \infty}(-1)^{n} \sin \left(\pi \sqrt{n^{2}+0.5 n+1}\right)\left(\sin \frac{(n+1) \pi}{2 n}\right)\( is (where \)\left.n \in N\right)$. (D) If \(\lim _{x \rightarrow \infty}\left(\frac{x+a}{x-a}\right)^{x}=e\) where 'a' is some real constant then the value of 'a' is equal to. Column - II (P) \(\frac{1}{\sqrt{2}}\) (Q) \(\frac{1}{4}\) (R) \(\pi\) (S) non existent

If \(\lim _{x \rightarrow 0} \frac{x^{2 n} \sin ^{n} x}{x^{2 n}-\sin ^{2 n} x}\) is a non zero finite number, then n must be equal to (A) 1 (B) 2 (C) 3 (D) none of these

Assertion \((A):\) A circle \(C_{1}\) is inscribed in an equilateral triangle \(\mathrm{ABC}\) with side length \(2 .\) Then circle \(\mathrm{C}_{2}\) is inscribed tangent to BC, CA and circle \(\mathrm{C}_{1}\). An infinite sequence of such circles is constructed, each tangent to \(\mathrm{BC}, \mathrm{CA}\) and the previous circle. The sum of areas of all the infinitely many circles is \(\frac{5 \pi}{8}\). Reason ( \(\mathbf{R}\) ) : Radius of \(\mathrm{C}_{1}\) is \(\frac{1}{\sqrt{3}}\), that of \(\mathrm{C}_{2}\) is \(\frac{1}{3 \sqrt{3}}\) and radius of the remaining circle each shrink by a factor \(\frac{1}{3}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free