Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If $\mathrm{f}(\mathrm{x})=\lim _{\mathrm{n} \rightarrow \infty} \frac{2 \mathrm{x}}{\pi} \tan ^{-1} \mathrm{nx}\(, then value of \)\lim _{\mathrm{x} \rightarrow 0}[\mathrm{f}(\mathrm{x})-1]$ is, where [.] represents greatest integer function (A) 0 (B) \(-1\) (C) 1 (D) does not exist

Short Answer

Expert verified
Question: Find the value of the limit \(\lim_{x \rightarrow 0} [f(x) - 1]\), where \(f(x) = \lim_{n \rightarrow \infty} \frac{2x}{\pi} \tan^{-1}(nx)\), and [.] represents the greatest integer function. Answer: -1

Step by step solution

01

Define f(x) using given limit

We are given that \(f(x) = \lim_{n \rightarrow \infty} \frac{2x}{\pi} \tan^{-1}(nx)\). Before proceeding, let's note that \(\tan^{-1}(nx)\) is the arctangent of \(nx\).
02

Analyze the limit

We need to find the limit \(\lim_{x \rightarrow 0} [f(x) - 1]\) as x approaches 0. We can rewrite this as: \(\lim_{x \rightarrow 0} [\lim_{n \rightarrow \infty} \frac{2x}{\pi} \tan^{-1}(nx) - 1]\).
03

Properties of arctangent

Recall that as \(y \rightarrow \infty\), \(\tan^{-1}(y) \rightarrow \frac{\pi}{2}\). This property will become useful in the next step, as we evaluate \(f(x)\) while \(n\) approaches infinity.
04

Evaluate f(x) while n approaches infinity

As \(n \rightarrow \infty\), we can rewrite \(f(x)\) as: $$f(x) = \lim_{n \rightarrow \infty} \frac{2x}{\pi} \tan^{-1}(nx) = \frac{2x}{\pi} \lim_{n \rightarrow \infty} \tan^{-1}(nx)$$ Now using the property of arctangent from Step 3, we get: $$f(x) = \frac{2x}{\pi} \cdot \frac{\pi}{2} = x$$
05

Evaluate the given limit using f(x)

Now we know \(f(x) = x\), let's substitute this back into the limit we need to find: $$\lim_{x \rightarrow 0} [f(x) - 1] = \lim_{x \rightarrow 0} [x - 1]$$
06

Applying the greatest integer function

As x approaches 0, \(x - 1\) approaches -1. Since the greatest integer function takes the largest integer less than or equal to the input, we have \([x - 1] = -1\) for \(x \rightarrow 0\). Therefore: $$\lim_{x \rightarrow 0} [x - 1] = -1$$
07

Conclusion

The limit \(\lim_{x \rightarrow 0} [f(x) - 1]\) is equal to -1. Therefore, the correct answer is (B) \(-1\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let $\mathrm{P}(\mathrm{x})=\mathrm{a}_{1} \mathrm{x}+\mathrm{a}_{2} \mathrm{x}^{2}+\mathrm{a}_{3} \mathrm{x}^{3}+\ldots \ldots .+\mathrm{a}_{100} \mathrm{x}^{100}\(, where \)\mathrm{a}_{1}=$ 1 and \(a_{i} \in R \forall i=2,3,4, \ldots, 100\) then \(\lim _{x \rightarrow 0} \frac{\sqrt[100]{1+P(x)}-1}{x}\) has the value equal to (A) 100 (B) \(\frac{1}{100}\) (C) 1 (D) 5050

$\lim _{x \rightarrow \infty} \frac{\cot ^{-1}(\sqrt{x-1}-\sqrt{x})}{\sec ^{-1}\left(\left(\frac{2 x+1}{x-1}\right)^{x}\right)}$ is equal to (A) (B) 0 (C) \(\frac{\pi}{2}\) (D) non-existent

$\lim _{x \rightarrow 0} \frac{6 x^{2}(\cot x)(\operatorname{cosec} 2 x)}{\sec \left(\cos x+\pi \tan \left(\frac{\pi}{4 \sec x}\right)-1\right)}$ has the value equal to (A) 6 (B) \(-6\) (C) 0 (D) \(-3\)

$\lim _{x \rightarrow-\infty}\left\\{x+\sqrt{x^{2}+3 x \cos \frac{1}{|x|}}\right\\}$ is equal to (A) \(3 / 2\) (B) \(-3 / 2\) (C) \(-1\) (D) none of these

Column - I (A) \(\lim _{x \rightarrow \infty}(\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}})\) equals (B) The value of the limit, $\lim _{x \rightarrow 0} \frac{\sin 2 x-2 \tan x}{\ln \left(1+x^{3}\right)}$ is (C) $\lim _{x \rightarrow 0^{-}}\left(\ln \sin ^{3} x-\ln \left(x^{4}+e x^{3}\right)\right)$ equals (D) Let tan \((2 \pi|\sin \theta|)=\cot (2 \pi|\cos \theta|)\), where $\theta \in \mathbb{R}$ and \(\mathrm{f}(\mathrm{x})=(|\sin \theta|+\cos \theta \mid)^{\mathrm{x}} .\) The value of $\lim _{\mathrm{x} \rightarrow \infty}\left[\frac{2}{\mathrm{f}(\mathrm{x})}\right]$ equals (Here [] represents greatest integer function) Column - II (P) \(-2\) (Q) \(-1\) (R) 0 (S) 1

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free