Chapter 1: Problem 54
$\lim _{x \rightarrow 0} \frac{\ell n\left(1+x+x^{2}\right)+\ell n\left(1-x+x^{2}\right)}{\sec x-\cos x}$ is equal to (A) 1 (B) \(-1\) (C) 0 (D) \(\infty\)
Chapter 1: Problem 54
$\lim _{x \rightarrow 0} \frac{\ell n\left(1+x+x^{2}\right)+\ell n\left(1-x+x^{2}\right)}{\sec x-\cos x}$ is equal to (A) 1 (B) \(-1\) (C) 0 (D) \(\infty\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf $\mathrm{f}(\mathrm{x})=\lim _{\mathrm{n} \rightarrow \infty} \frac{2 \mathrm{x}}{\pi} \tan ^{-1} \mathrm{nx}\(, then value of \)\lim _{\mathrm{x} \rightarrow 0}[\mathrm{f}(\mathrm{x})-1]$ is, where [.] represents greatest integer function (A) 0 (B) \(-1\) (C) 1 (D) does not exist
Consider the function \(f(x)=\cos ^{-1}[\cot x]\) where [ ] indicates greatest integer function. Assertion (A): \(\lim _{x \rightarrow \frac{\pi}{2}} f(x)\) exists Reason \((\mathbf{R}):\) Both \(\lim \mathrm{f}(\mathrm{x})\) and $\lim \mathrm{f}(\mathrm{x})$ are finite. \(x \rightarrow \frac{\pi}{2} \quad x \rightarrow \frac{\pi}{2}\)
If \(\mathrm{a}, \mathrm{b}\) and \(\mathrm{c}\) are real numbers then the value of $\lim _{t \rightarrow 0} \ln \left(\frac{1}{t} \int_{0}^{t}(1+a \sin b x)^{\mathrm{c} / x} d x\right)$ equals (A) \(a b c\) (B) \(\frac{a b}{c}\) (C) \(\frac{b c}{a}\) (D) \(\frac{\mathrm{ca}}{\mathrm{b}}\)
$\lim _{x \rightarrow-\infty}\left\\{x+\sqrt{x^{2}+3 x \cos \frac{1}{|x|}}\right\\}$ is equal to (A) \(3 / 2\) (B) \(-3 / 2\) (C) \(-1\) (D) none of these
The false statement(s) is / are (A) If \(\mathrm{P}(\mathrm{x})\) is a polynomial, then the function \(\mathrm{f}(\mathrm{x})=\frac{\mathrm{P}(\mathrm{x})}{\mathrm{x}-1}\) has a vertical asymptote at \(\mathrm{x}=1\). (B) A polynomial function has no vertical asymptote and a rational function has atleast one vertical asymptote. (C) If \(\mathrm{f}(\mathrm{x})\) has a vertical asymptote at \(\mathrm{x}=0\), then \(\mathrm{f}\) is undefined at \(\mathrm{x}=0\). (D) A function can have move than two horizontal asymptotes.
What do you think about this solution?
We value your feedback to improve our textbook solutions.