Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that a and \(\mathrm{b}\) are real positive numbers then the value of \(\lim _{t \rightarrow 0}\left(\frac{b^{t+1}-a^{t+1}}{b-a}\right)^{1 / t}\) has the value equals to (A) $\frac{\mathrm{a} \ln \mathrm{b}-\mathrm{b} \ln \mathrm{a}}{\mathrm{b}-\mathrm{a}}$ (B) $\frac{\mathrm{b} \ln \mathrm{b}-\mathrm{a} \ln \mathrm{a}}{\mathrm{b}-\mathrm{a}}$ (C) \(\mathrm{b} \ln \mathrm{b}-\mathrm{a} \ln \mathrm{a}\) (D) \(\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}}\)

Short Answer

Expert verified
Answer: The limit of the expression is (B) \(\frac{b \ln b-a \ln a}{b-a}\).

Step by step solution

01

Rewrite the given expression using logarithms

We will first rewrite the given expression using logarithms. For the expression \(\lim_{t\rightarrow0} (\frac{b^{t+1}-a^{t+1}}{b-a})^{1/t}\), we will take the natural logarithm (ln) of both sides of the expression. This will simplify the expression and make it easier to work with.
02

Apply Natural Logarithm property on the expression

Now, let's apply ln on both sides of the expression: \(\lim_{t\rightarrow 0} ln(\frac{b^{t+1}-a^{t+1}}{b-a})^{1/t}\). Apply the logarithm property of \(ln(x^p) = p* ln(x)\), we get: $$\lim_{t\rightarrow 0} \frac{1}{t} ln(\frac{b^{t+1}-a^{t+1}}{b-a})$$
03

Apply Limit property and solve for Limit

We know that \(lim_{x\rightarrow 0} \frac{ln(1+x)}{x} = 1\). Using this property, we will rewrite the given expression as: $$\frac{ln(\frac{b^{t+1}-a^{t+1}}{b-a})}{t} = \frac{ln(1+(\frac{b^{t+1}-a^{t+1}}{b-a}-1))}{t}$$ Now we have it in the form of \(lim_{t \rightarrow 0} \frac{ln(1+x)}{x}\). So, when we take the limit as \(t \rightarrow 0\), we get: $$1*\frac{b\ln b-a\ln a}{b-a} = \frac{b\ln b-a\ln a}{b-a}$$
04

Compare the result with given choices

Comparing the result with given choices, we can see that our result matches with option (B): $$\frac{b\ln b-a\ln a}{b-a}$$ So, the correct choice is (B) \(\frac{b \ln b-a \ln a}{b-a}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the function \(f(x)=\cos ^{-1}[\cot x]\) where [ ] indicates greatest integer function. Assertion (A): \(\lim _{x \rightarrow \frac{\pi}{2}} f(x)\) exists Reason \((\mathbf{R}):\) Both \(\lim \mathrm{f}(\mathrm{x})\) and $\lim \mathrm{f}(\mathrm{x})$ are finite. \(x \rightarrow \frac{\pi}{2} \quad x \rightarrow \frac{\pi}{2}\)

Column - I (A) \(\lim _{x \rightarrow \infty}(\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}})\) equals (B) The value of the limit, $\lim _{x \rightarrow 0} \frac{\sin 2 x-2 \tan x}{\ln \left(1+x^{3}\right)}$ is (C) $\lim _{x \rightarrow 0^{-}}\left(\ln \sin ^{3} x-\ln \left(x^{4}+e x^{3}\right)\right)$ equals (D) Let tan \((2 \pi|\sin \theta|)=\cot (2 \pi|\cos \theta|)\), where $\theta \in \mathbb{R}$ and \(\mathrm{f}(\mathrm{x})=(|\sin \theta|+\cos \theta \mid)^{\mathrm{x}} .\) The value of $\lim _{\mathrm{x} \rightarrow \infty}\left[\frac{2}{\mathrm{f}(\mathrm{x})}\right]$ equals (Here [] represents greatest integer function) Column - II (P) \(-2\) (Q) \(-1\) (R) 0 (S) 1

Let $\mathrm{f}(\mathrm{x})=\left[\begin{array}{ll}\mathrm{mx}^{2}+\mathrm{n} & \text { for } \quad \mathrm{x}<0 \\ \mathrm{n} x+\mathrm{m} & \text { for } 0 \leq \mathrm{x} \leq 1 \\ \mathrm{n} \mathrm{x}^{3}+\mathrm{m} & \text { for } \quad \mathrm{x}>1\end{array}\right.\( where \)\mathrm{m}, \mathrm{n} \in \mathrm{R}$ then which of the following must be correct (A) \(\lim _{x \rightarrow 0} f(x)\) exist for all values of \(m\) and \(n\). (B) \(\lim _{x \rightarrow 0} f(x)\) exists only if \(m=n\). (C) \(\lim _{x \rightarrow 0} f(x)\) exists for all values of \(m\) and \(n\). (D) \(\lim _{x \rightarrow 1} f(x)\) exists for no values of \(m\) and \(n\).

The value of $\lim _{n \rightarrow \infty} \frac{1^{6}+2^{6}+3^{6} \ldots \ldots . n^{6}}{\left(1^{2}+2^{2}+3^{2} \ldots \ldots n^{2}\right)\left(1^{3}+2^{3}+3^{3}+\ldots \ldots . n^{3}\right)}$ (A) \(\frac{14}{7}\) (B) \(\frac{21}{8}\) (C) \(\frac{132}{17}\) (D) \(\frac{12}{7}\)

Let \(l_{1}=\lim _{x \rightarrow \infty} \sqrt{\frac{x-\cos ^{2} x}{x+\sin x}}\) and $l_{2}=\lim _{\mathrm{h} \rightarrow 0^{-}} \int_{-1}^{1} \frac{\mathrm{h} \mathrm{dx}}{\mathrm{h}^{2}+\mathrm{x}^{2}} .$ Then (A) both \(l_{1}\) and \(l_{2}\) are less than \(\frac{22}{7}\) (B) one of the two limits is rational and other irrational. (C) \(l_{2}>l_{1}\) (D) \(l_{2}\) is greater than 3 times of \(l_{1}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free