Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Assume that \(\lim _{\theta \rightarrow 1} \mathrm{f}(\theta)\) exists and $\frac{\theta^{2}+\theta-2}{\theta+3} \leq \frac{\mathrm{f}(\theta)}{\theta^{2}} \leq \frac{\theta^{2}+2 \theta-1}{\theta+3}$ holds for certain interval containing the point \(\theta=-1\) then $\lim _{\theta \rightarrow 1} \mathrm{f}(\theta)$ (A) is equal to \(\mathrm{f}(-1)\) (B) is equal to 1 (C) is non-existent (D) is equal to \(-1\)

Short Answer

Expert verified
Short Answer: The limit of f(θ) as θ approaches 1 lies between 0 and 1/2, i.e., \(0 \leq \lim_{\theta \rightarrow 1} \mathrm{f}(\theta) \leq \frac{1}{2}\). However, none of the given options (A, B, C, or D) match this result.

Step by step solution

01

Take the limit of the inequality

First, let's compute the limit as \(\theta\) approaches 1. \(\lim_{\theta \rightarrow 1} \frac{\theta^{2}+\theta-2}{\theta+3} \leq \lim_{\theta \rightarrow 1} \frac{\mathrm{f}(\theta)}{\theta^{2}} \leq \lim_{\theta \rightarrow 1} \frac{\theta^{2}+2 \theta-1}{\theta+3}\)
02

Apply the limit definition

Applying the limit definition, we get: \(\lim_{\theta \rightarrow 1} \frac{\theta^{2}+\theta-2}{\theta+3} = \frac{1^2+1-2}{1+3} = \frac{0}{4} = 0\) \(\lim_{\theta \rightarrow 1} \frac{\theta^{2}+2 \theta-1}{\theta+3} = \frac{1^2+2\cdot1-1}{1+3} = \frac{2}{4} = \frac{1}{2}\) So the inequality becomes: \(0 \leq \lim_{\theta \rightarrow 1} \frac{\mathrm{f}(\theta)}{\theta^{2}} \leq \frac{1}{2}\)
03

Multiply the inequality by \(\theta^2\)

Now, multiply the inequality by \(\theta^2\): \(0 \cdot \theta^{2} \leq \mathrm{f}(\theta) \leq \frac{1}{2} \cdot \theta^{2}\) As \(\lim_{\theta \rightarrow 1} \mathrm{f}(\theta)\) exists, we can write: \(\lim_{\theta \rightarrow 1} 0 \cdot \theta^{2} \leq \lim_{\theta \rightarrow 1} \mathrm{f}(\theta) \leq \lim_{\theta \rightarrow 1} \frac{1}{2} \cdot \theta^{2}\)
04

Simplify the inequality

Simplify: \(0 \leq \lim_{\theta \rightarrow 1} \mathrm{f}(\theta) \leq \frac{1}{2}\) We can see that the limit lies between 0 and 1/2. Therefore, we can eliminate options A, B, and D. The only option left is (C), which states the limit is non-existent, but this contradicts our assumption that the limit exists. So, it seems there is a mismatch in the options or the question. It is important to verify if the given question or options are correct.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Column - I (A) If $\lim _{x \rightarrow \infty}\left(\sqrt{\left(x^{2}-x-1\right)}-a x-b\right)=0\(, where \)a>0$, then there exists atleast one a and \(b\) for which point (a, \(2 b\) ) lies on the line (B) If $\lim _{x \rightarrow 0} \frac{\left(1+a^{3}\right)+8 e^{1 / x}}{1+\left(1-b^{3}\right) e^{1 / x}}=2$, then there exists atleast one \(a\) and \(b\) for which point \(\left(a, b^{3}\right)\) lies on the line (C) If $\lim _{\mathrm{x} \rightarrow \infty}\left(\sqrt{\left(\mathrm{x}^{4}-\mathrm{x}^{2}+1\right)}-\mathrm{ax}^{2}-\mathrm{b}\right)=0$, then there exists atleast one a and \(\mathrm{b}\) for which point \((\mathrm{a},-2 \mathrm{~b})\) lies on the line (D) If \(\lim _{x \rightarrow-a} \frac{x^{7}+a^{7}}{x+a}=7\), where \(a<0\), then there exists atleast one a for which point \((a, 2)\) lies on the line. Column - II (P) \(\mathrm{y}=-3\) (Q) \(3 x-2 y-5=0\) (R) \(15 x-2 y-13=0\) (S) \(\mathrm{y}=2\)

The value of $\lim _{n \rightarrow \infty} \frac{1^{6}+2^{6}+3^{6} \ldots \ldots . n^{6}}{\left(1^{2}+2^{2}+3^{2} \ldots \ldots n^{2}\right)\left(1^{3}+2^{3}+3^{3}+\ldots \ldots . n^{3}\right)}$ (A) \(\frac{14}{7}\) (B) \(\frac{21}{8}\) (C) \(\frac{132}{17}\) (D) \(\frac{12}{7}\)

\(\mathrm{A}_{0}\) is an equilateral triangle of unit area, \(\mathrm{A}_{0}\) is divided into four equal parts, each an equilateral triangle, by joining the mid points of the sides of \(\mathrm{A}_{0}\). The central triangle is removed. Treating the remaining three triangles in the same way of division as was done to \(\mathrm{A}_{0}\), and this process is repeated \(\mathrm{n}\) times. The sum of the area of the triangles removed in \(\mathrm{S}_{\mathrm{n}}\) then $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{S}_{\mathrm{n}}$ is (A) \(1 / 2\) (B) 1 (C) \(-1\) (D) 2

The value of $\lim _{\mathrm{x} \rightarrow 1}\left(\frac{\mathrm{x}^{3}+2 \mathrm{x}^{2}+\mathrm{x}+1}{\mathrm{x}^{2}+2 \mathrm{x}+3}\right)^{\frac{1-\cos (\mathrm{x}-1)}{(\mathrm{x}-1)^{2}}}$ is (A) e (B) \(\mathrm{e}^{1 / 2}\) (C) 1 (D) none of these

Let $\mathrm{f}(\mathrm{x})=\left\\{\begin{array}{ll}{\left[\mathrm{x}^{\mathrm{x}}\right]+\mathrm{a},} & \mathrm{x}>0 \\ \lim _{t \rightarrow \infty}\left(\frac{\sin \mathrm{x}}{\mathrm{x}}\right)^{\mathrm{t}}, & \mathrm{x}<0\end{array}\right.$. The complete set of the values of ' \(\mathrm{a}\) ' for which Approx exists is (A) \((0,2]\) (B) \((-2,2)\) (C) \([-1,1]\) (D) None of these

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free