Chapter 1: Problem 5
$\lim _{x \rightarrow \infty}\left(1+a^{2}\right)^{x} \cdot \frac{b}{\left(1+a^{2}\right)^{x}}\( is \)(a, b \in R)$ (A) \(\sqrt{b}\) (B) b (C) \(\mathrm{b}^{2}\) (D) none of these
Chapter 1: Problem 5
$\lim _{x \rightarrow \infty}\left(1+a^{2}\right)^{x} \cdot \frac{b}{\left(1+a^{2}\right)^{x}}\( is \)(a, b \in R)$ (A) \(\sqrt{b}\) (B) b (C) \(\mathrm{b}^{2}\) (D) none of these
All the tools & learning materials you need for study success - in one app.
Get started for freeThe function(s) which have a limit as \(\mathrm{n} \rightarrow \infty\) (A) \(\left(\frac{n-1}{n+1}\right)^{2}\) (B) \((-1)^{n}\left(\frac{n-1}{n+1}\right)^{2}\) (C) \(\frac{n^{2}+1}{n}\) (D) \((-1)^{n} \frac{n^{2}+1}{n}\)
$\lim _{n \rightarrow \infty} \frac{1 . n+(n-1)(1+2)+(n-2)(1+2+3)+. .1 \cdot \sum_{r=1}^{n} r}{n^{4}}$ is equal to (A) \(1 / 12\) (B) \(1 / 24\) (C) \(1 / 6\) (D) \(1 / 48\)
If $\lim _{x \rightarrow \infty}\left(\sqrt{a^{2} x^{2}+a x+1}-\sqrt{a^{2} x^{2}+1}\right)$ $=\mathrm{K} \cdot \lim _{x \rightarrow \infty}(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x})\( then the value of \)\mathrm{K}$ (A) (B) (C) \(2 \mathrm{a}\) (D) None of these
Assertion \((A):\) A circle \(C_{1}\) is inscribed in an equilateral triangle \(\mathrm{ABC}\) with side length \(2 .\) Then circle \(\mathrm{C}_{2}\) is inscribed tangent to BC, CA and circle \(\mathrm{C}_{1}\). An infinite sequence of such circles is constructed, each tangent to \(\mathrm{BC}, \mathrm{CA}\) and the previous circle. The sum of areas of all the infinitely many circles is \(\frac{5 \pi}{8}\). Reason ( \(\mathbf{R}\) ) : Radius of \(\mathrm{C}_{1}\) is \(\frac{1}{\sqrt{3}}\), that of \(\mathrm{C}_{2}\) is \(\frac{1}{3 \sqrt{3}}\) and radius of the remaining circle each shrink by a factor \(\frac{1}{3}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.