Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

$\lim _{x \rightarrow \infty}\left(1+a^{2}\right)^{x} \cdot \frac{b}{\left(1+a^{2}\right)^{x}}\( is \)(a, b \in R)$ (A) \(\sqrt{b}\) (B) b (C) \(\mathrm{b}^{2}\) (D) none of these

Short Answer

Expert verified
Question: Find the limit of the given function as \(x \rightarrow \infty\): \(\lim _{x \rightarrow \infty}\left((1+a^{2})^{x} \cdot \frac{b}{(1+a^{2})^{x}}\right)\) Options: A) \(\sqrt{b}\) B) b C) \({b}^{2}\) D) none of these Answer: (B) b

Step by step solution

01

Write down the given function

The given function is: \(\lim _{x \rightarrow \infty}\left((1+a^{2})^{x} \cdot \frac{b}{(1+a^{2})^{x}}\right)\)
02

Simplify the given function

We can simplify the given function by dividing the base of the power function in the numerator and denominator. \(\lim _{x \rightarrow \infty}\left(\frac{(1+a^{2})^{x} \cdot b}{(1+a^{2})^{x}}\right)\) By simplifying: \(\lim _{x \rightarrow \infty} \left(b\right)\)
03

Determine the limit

Since b is a constant, the limit is itself as x approaches infinity: \(\lim _{x \rightarrow \infty} \left(b\right) = b\)
04

Choose the correct option

By comparing the result to the given options, we see that our result matches option (B): Answer: (B) b

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The function(s) which have a limit as \(\mathrm{n} \rightarrow \infty\) (A) \(\left(\frac{n-1}{n+1}\right)^{2}\) (B) \((-1)^{n}\left(\frac{n-1}{n+1}\right)^{2}\) (C) \(\frac{n^{2}+1}{n}\) (D) \((-1)^{n} \frac{n^{2}+1}{n}\)

$\lim _{n \rightarrow \infty} \frac{1 . n+(n-1)(1+2)+(n-2)(1+2+3)+. .1 \cdot \sum_{r=1}^{n} r}{n^{4}}$ is equal to (A) \(1 / 12\) (B) \(1 / 24\) (C) \(1 / 6\) (D) \(1 / 48\)

If $\mathrm{f}(\mathrm{x})=\cot ^{-1}\left(\frac{2 \mathrm{x}}{1-\mathrm{x}^{2}}\right)\( and \)\mathrm{g}(\mathrm{x})=\cos ^{-1}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)$, then \(\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{g(x)-g(a)}\), where \(\left(0

If $\lim _{x \rightarrow \infty}\left(\sqrt{a^{2} x^{2}+a x+1}-\sqrt{a^{2} x^{2}+1}\right)$ $=\mathrm{K} \cdot \lim _{x \rightarrow \infty}(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x})\( then the value of \)\mathrm{K}$ (A) (B) (C) \(2 \mathrm{a}\) (D) None of these

Assertion \((A):\) A circle \(C_{1}\) is inscribed in an equilateral triangle \(\mathrm{ABC}\) with side length \(2 .\) Then circle \(\mathrm{C}_{2}\) is inscribed tangent to BC, CA and circle \(\mathrm{C}_{1}\). An infinite sequence of such circles is constructed, each tangent to \(\mathrm{BC}, \mathrm{CA}\) and the previous circle. The sum of areas of all the infinitely many circles is \(\frac{5 \pi}{8}\). Reason ( \(\mathbf{R}\) ) : Radius of \(\mathrm{C}_{1}\) is \(\frac{1}{\sqrt{3}}\), that of \(\mathrm{C}_{2}\) is \(\frac{1}{3 \sqrt{3}}\) and radius of the remaining circle each shrink by a factor \(\frac{1}{3}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free