Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let $\mathrm{P}(\mathrm{x})=\mathrm{a}_{1} \mathrm{x}+\mathrm{a}_{2} \mathrm{x}^{2}+\mathrm{a}_{3} \mathrm{x}^{3}+\ldots \ldots .+\mathrm{a}_{100} \mathrm{x}^{100}\(, where \)\mathrm{a}_{1}=$ 1 and \(a_{i} \in R \forall i=2,3,4, \ldots, 100\) then \(\lim _{x \rightarrow 0} \frac{\sqrt[100]{1+P(x)}-1}{x}\) has the value equal to (A) 100 (B) \(\frac{1}{100}\) (C) 1 (D) 5050

Short Answer

Expert verified
Answer: (B) \(\frac{1}{100}\)

Step by step solution

01

Rewrite the expression

First, rewrite the expression inside the limit as follows: \(\lim _{x \rightarrow 0} \frac{\sqrt[100]{1+P(x)}-1}{x}\) = \(\lim _{x \rightarrow 0}\frac{(\frac{1}{100})(1+P(x))^{\frac{1}{100}-1}(P'(x))}{1}\)
02

Apply L'Hôpital's Rule

We can now apply L'Hôpital's Rule to the expression. The rule states that if the expression is of the form "0/0" or "infinity/infinity," we can differentiate the numerator and denominator separately and take the limit of the new fraction. In this case, differentiating the numerator gives: \(\frac{d}{dx}((\frac{1}{100})(1+P(x))^{\frac{1}{100}-1}(P'(x))) = (\frac{1}{100})(-\frac{99}{100})(1+P(x))^{\frac{1}{100}-2}(P'(x)^2) + (\frac{1}{100})(1+P(x))^{\frac{1}{100}-1}(P''(x))\) Differentiating the denominator gives: \(\frac{d}{dx}(1) = 0\) So the limit becomes: \(\lim _{x \rightarrow 0}\frac{(\frac{1}{100})(-\frac{99}{100})(1+P(x))^{\frac{1}{100}-2}(P'(x)^2) + (\frac{1}{100})(1+P(x))^{\frac{1}{100}-1}(P''(x))}{0}\)
03

Apply properties of limits

Since the denominator of the fraction is now 0 (as a result of the differentiation), we can apply the properties of limits to solve this problem: \(\lim _{x \rightarrow 0}\frac{(\frac{1}{100})(-\frac{99}{100})(1+P(x))^{\frac{1}{100}-2}(P'(x)^2) + (\frac{1}{100})(1+P(x))^{\frac{1}{100}-1}(P''(x))}{0}\) = \(\lim _{x \rightarrow 0}(\frac{1}{100})(-\frac{99}{100})(1+P(x))^{\frac{1}{100}-2}(P'(x)^2) + \lim _{x \rightarrow 0} (\frac{1}{100})(1+P(x))^{\frac{1}{100}-1}(P''(x))\) Since \(\lim _{x \rightarrow 0} (1+P(x)) = 1+1 = 2\) and \(\lim _{x \rightarrow 0} (P'(x))\) and \(\lim _{x \rightarrow 0} (P''(x))\) are finite, we can evaluate the limits as follows: \(\lim _{x \rightarrow 0}(\frac{1}{100})(-\frac{99}{100})(1+P(x))^{\frac{1}{100}-2}(P'(x)^2) = 0\) \(\lim _{x \rightarrow 0} (\frac{1}{100})(1+P(x))^{\frac{1}{100}-1}(P''(x)) = (\frac{1}{100})(2^{\frac{1}{100}-1})(P''(0)) = \frac{1}{100}\) So the answer is: (B) \(\frac{1}{100}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If $\mathrm{f}(\mathrm{x})=\left\\{\begin{array}{ll}\mathrm{x} & ; \mathrm{x} \leq 0 \\ -\mathrm{x} & ; \mathrm{x}>0\end{array}\right.$ and \(\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x})+|\mathrm{x}|\). Then \(\lim _{\rightarrow 0^{+}}\left(\log _{\sin x \mid} x\right)^{(x)}\) is (A) (B) (C) \(1 / 2\) (D) not exist

Column - I (A) \(\lim _{x \rightarrow \infty}(\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}})\) equals (B) The value of the limit, $\lim _{x \rightarrow 0} \frac{\sin 2 x-2 \tan x}{\ln \left(1+x^{3}\right)}$ is (C) $\lim _{x \rightarrow 0^{-}}\left(\ln \sin ^{3} x-\ln \left(x^{4}+e x^{3}\right)\right)$ equals (D) Let tan \((2 \pi|\sin \theta|)=\cot (2 \pi|\cos \theta|)\), where $\theta \in \mathbb{R}$ and \(\mathrm{f}(\mathrm{x})=(|\sin \theta|+\cos \theta \mid)^{\mathrm{x}} .\) The value of $\lim _{\mathrm{x} \rightarrow \infty}\left[\frac{2}{\mathrm{f}(\mathrm{x})}\right]$ equals (Here [] represents greatest integer function) Column - II (P) \(-2\) (Q) \(-1\) (R) 0 (S) 1

\(\lim _{x \rightarrow-\infty} x+\sqrt{x^{2}+x^{2} \sin (1 / x)}\) is equal to (A) 0 (B) 2 (C) \(-2\) (D) none of these

For which of the following functions, Approx \(\mathrm{f}(\mathrm{x})\) exists : (A) \(\underset{x \rightarrow 1}{\text { Approx }} \frac{x^{2}-1}{|x-1|}\) (B) Approx \(\frac{2\\{x\\}-4}{[x]-3}\) (C) $\underset{x \rightarrow 0}{\operatorname{Approx}} \frac{1}{2-2^{\frac{1}{x}}}$ (D) None of these

Let \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are non zero constant number then $\lim _{\mathrm{r} \rightarrow \infty} \frac{\cos \frac{\mathrm{a}}{\mathrm{r}}-\cos \frac{\mathrm{b}}{\mathrm{r}} \cos \frac{\mathrm{c}}{\mathrm{r}}}{\sin \frac{\mathrm{b}}{\mathrm{r}} \sin \frac{\mathrm{c}}{\mathrm{r}}}$ equals (A) \(\frac{a^{2}+b^{2}-c^{2}}{2 b c}\) (B) \(\frac{\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{bc}}\) (C) \(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\) (D) independent of \(a, b, c\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free