Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The value of $\left(\lim _{x \rightarrow 0}\left[\frac{100 x}{\sin x}\right]+\left[\frac{99 \sin x}{x}\right]\right)$ is (where [.] denotes greatest integer function) (A) 199 (B) 198 (C) 197 (D) None of these

Short Answer

Expert verified
Answer: (A) 199

Step by step solution

01

Apply limit properties

We can split the given function into two separate limits, as follows: \(\lim_{x \rightarrow 0} \left[\frac{100 x}{\sin x}\right] + \lim_{x \rightarrow 0} \left[\frac{99 \sin x}{x}\right]\)
02

Solve the first limit using L'Hôpital's Rule

Since the first limit is of the form \(\frac{0}{0}\) when \(x \to 0\), we can use L'Hôpital's Rule. This states that if \(\lim_{x \rightarrow a} \frac{f(x)}{g(x)}\) exists and is not of the form \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), then \(\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}\) Applying L'Hôpital's Rule to the first limit, we have: \(\lim_{x \rightarrow 0} \frac{100 x}{\sin x} = \lim_{x \rightarrow 0} \frac{100}{\cos x} = \frac{100}{\cos 0} = 100\) So, \([\lim_{x \rightarrow 0} \frac{100 x}{\sin x}] = [100] = 100\).
03

Solve the second limit using trigonometric identities

Now let's consider the second limit: \(\lim_{x \rightarrow 0} \left[\frac{99 \sin x}{x}\right]\). We can use the trigonometric identity \(\lim_{x \rightarrow 0} \frac{\sin x}{x} = 1\). Thus, \(\lim_{x \rightarrow 0} \left[\frac{99 \sin x}{x}\right] = 99[\lim_{x \rightarrow 0} \frac{\sin x}{x}] = 99[1] = 99\)
04

Combine the results and choose the correct option

Adding the results from Steps 2 and 3, we get: \([100] + [99] = 100 + 99 = 199\) So, the correct answer is (A) 199.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If $\mathrm{f}(\mathrm{x})=\lim _{\mathrm{n} \rightarrow \infty} \frac{2 \mathrm{x}}{\pi} \tan ^{-1} \mathrm{nx}\(, then value of \)\lim _{\mathrm{x} \rightarrow 0}[\mathrm{f}(\mathrm{x})-1]$ is, where [.] represents greatest integer function (A) 0 (B) \(-1\) (C) 1 (D) does not exist

\(\lim _{x \rightarrow 0}\left\\{(1+x)^{\frac{2}{x}}\right\\}\) (where \(\\{x\\}\) denotes the fractional part of \(\mathrm{x}\) ) is equal to (A) \(\mathrm{e}^{2}-7\) (B) \(e^{2}-8\) (C) \(\mathrm{e}^{2}-6\) (D) None of these

If \(\left\\{t_{n}\right\\}\) be a sequence such that $t_{n}=\frac{2 n}{3 n+1}, S_{n}\( denote the sum of the first \)\mathrm{n}\( terms and \)\ell=\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{n}}{\sqrt{2}} \frac{\mathrm{S}_{\mathrm{n}+1}-\mathrm{S}_{\mathrm{n}}}{\sqrt{\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}}}$, then $\ell=\lim _{n \rightarrow \infty} \ell+2 \ell^{2}+3 \ell^{2}+\ldots \ldots .+(n+1) \ell^{n+1}$ equals (A) 18 (B) 9 (C) 3 (D) 6

The false statement(s) is / are (A) If \(\mathrm{P}(\mathrm{x})\) is a polynomial, then the function \(\mathrm{f}(\mathrm{x})=\frac{\mathrm{P}(\mathrm{x})}{\mathrm{x}-1}\) has a vertical asymptote at \(\mathrm{x}=1\). (B) A polynomial function has no vertical asymptote and a rational function has atleast one vertical asymptote. (C) If \(\mathrm{f}(\mathrm{x})\) has a vertical asymptote at \(\mathrm{x}=0\), then \(\mathrm{f}\) is undefined at \(\mathrm{x}=0\). (D) A function can have move than two horizontal asymptotes.

Assume that \(\lim _{\theta \rightarrow 1} \mathrm{f}(\theta)\) exists and $\frac{\theta^{2}+\theta-2}{\theta+3} \leq \frac{\mathrm{f}(\theta)}{\theta^{2}} \leq \frac{\theta^{2}+2 \theta-1}{\theta+3}$ holds for certain interval containing the point \(\theta=-1\) then $\lim _{\theta \rightarrow 1} \mathrm{f}(\theta)$ (A) is equal to \(\mathrm{f}(-1)\) (B) is equal to 1 (C) is non-existent (D) is equal to \(-1\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free