Chapter 1: Problem 45
The value of $\left(\lim _{x \rightarrow 0}\left[\frac{100 x}{\sin x}\right]+\left[\frac{99 \sin x}{x}\right]\right)$ is (where [.] denotes greatest integer function) (A) 199 (B) 198 (C) 197 (D) None of these
Chapter 1: Problem 45
The value of $\left(\lim _{x \rightarrow 0}\left[\frac{100 x}{\sin x}\right]+\left[\frac{99 \sin x}{x}\right]\right)$ is (where [.] denotes greatest integer function) (A) 199 (B) 198 (C) 197 (D) None of these
All the tools & learning materials you need for study success - in one app.
Get started for freeIf $\mathrm{f}(\mathrm{x})=\lim _{\mathrm{n} \rightarrow \infty} \frac{2 \mathrm{x}}{\pi} \tan ^{-1} \mathrm{nx}\(, then value of \)\lim _{\mathrm{x} \rightarrow 0}[\mathrm{f}(\mathrm{x})-1]$ is, where [.] represents greatest integer function (A) 0 (B) \(-1\) (C) 1 (D) does not exist
\(\lim _{x \rightarrow 0}\left\\{(1+x)^{\frac{2}{x}}\right\\}\) (where \(\\{x\\}\) denotes the fractional part of \(\mathrm{x}\) ) is equal to (A) \(\mathrm{e}^{2}-7\) (B) \(e^{2}-8\) (C) \(\mathrm{e}^{2}-6\) (D) None of these
If \(\left\\{t_{n}\right\\}\) be a sequence such that $t_{n}=\frac{2 n}{3 n+1}, S_{n}\( denote the sum of the first \)\mathrm{n}\( terms and \)\ell=\lim _{\mathrm{n} \rightarrow \infty} \frac{\mathrm{n}}{\sqrt{2}} \frac{\mathrm{S}_{\mathrm{n}+1}-\mathrm{S}_{\mathrm{n}}}{\sqrt{\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}}}$, then $\ell=\lim _{n \rightarrow \infty} \ell+2 \ell^{2}+3 \ell^{2}+\ldots \ldots .+(n+1) \ell^{n+1}$ equals (A) 18 (B) 9 (C) 3 (D) 6
The false statement(s) is / are (A) If \(\mathrm{P}(\mathrm{x})\) is a polynomial, then the function \(\mathrm{f}(\mathrm{x})=\frac{\mathrm{P}(\mathrm{x})}{\mathrm{x}-1}\) has a vertical asymptote at \(\mathrm{x}=1\). (B) A polynomial function has no vertical asymptote and a rational function has atleast one vertical asymptote. (C) If \(\mathrm{f}(\mathrm{x})\) has a vertical asymptote at \(\mathrm{x}=0\), then \(\mathrm{f}\) is undefined at \(\mathrm{x}=0\). (D) A function can have move than two horizontal asymptotes.
Assume that \(\lim _{\theta \rightarrow 1} \mathrm{f}(\theta)\) exists and $\frac{\theta^{2}+\theta-2}{\theta+3} \leq \frac{\mathrm{f}(\theta)}{\theta^{2}} \leq \frac{\theta^{2}+2 \theta-1}{\theta+3}$ holds for certain interval containing the point \(\theta=-1\) then $\lim _{\theta \rightarrow 1} \mathrm{f}(\theta)$ (A) is equal to \(\mathrm{f}(-1)\) (B) is equal to 1 (C) is non-existent (D) is equal to \(-1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.