Chapter 1: Problem 43
The value of $\lim _{x \rightarrow 0} \frac{(\tan (\\{x\\}-1)) \sin \\{x\\}}{\\{x\\}(\\{x\\}-1)}\(, where \)\\{x\\}$ denotes the fractional part function, is (A) is 1 (B) is tan 1 (C) is \(\sin 1\) (D) is non-existent
Chapter 1: Problem 43
The value of $\lim _{x \rightarrow 0} \frac{(\tan (\\{x\\}-1)) \sin \\{x\\}}{\\{x\\}(\\{x\\}-1)}\(, where \)\\{x\\}$ denotes the fractional part function, is (A) is 1 (B) is tan 1 (C) is \(\sin 1\) (D) is non-existent
All the tools & learning materials you need for study success - in one app.
Get started for freeThe value of $\lim _{\mathrm{x} \rightarrow 0}\left[\frac{|\sin \mathrm{x}|}{|\mathrm{x}|}\right]$, (where [.] denotes greatest integer function) is (A) 0 (B) does not exists (C) \(-1\) (D) 1
Assertion \((A):\) A circle \(C_{1}\) is inscribed in an equilateral triangle \(\mathrm{ABC}\) with side length \(2 .\) Then circle \(\mathrm{C}_{2}\) is inscribed tangent to BC, CA and circle \(\mathrm{C}_{1}\). An infinite sequence of such circles is constructed, each tangent to \(\mathrm{BC}, \mathrm{CA}\) and the previous circle. The sum of areas of all the infinitely many circles is \(\frac{5 \pi}{8}\). Reason ( \(\mathbf{R}\) ) : Radius of \(\mathrm{C}_{1}\) is \(\frac{1}{\sqrt{3}}\), that of \(\mathrm{C}_{2}\) is \(\frac{1}{3 \sqrt{3}}\) and radius of the remaining circle each shrink by a factor \(\frac{1}{3}\).
Which of the following functions have a graph which lies between the graphs of \(\mathrm{y}=|\mathrm{x}|\) and \(\mathrm{y}=-|\mathrm{x}|\) and have a limiting value as \(\mathrm{x} \rightarrow 0\). (A) \(\mathrm{y}=\mathrm{x} \cos \mathrm{x}\) (B) \(y=|x| \sin x\) (C) \(\mathrm{y}=\mathrm{x} \cos \frac{\mathrm{l}}{\mathrm{x}}\) (D) \(\mathrm{y}=\left|\mathrm{x} \sin \frac{1}{\mathrm{x}}\right|\)
$\sum_{r=1}^{\infty} \frac{r^{3}+\left(r^{2}+1\right)^{2}}{\left(r^{4}+r^{2}+1\right)\left(r^{2}+r\right)}$ is equal to (A) \(3 / 2\) (B) 1 (C) 2 (D) infinite
If \(\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \sin x^{2} d x}{x^{n}}\) is a non zero definite number, then value of \(\mathrm{n}\) is (A) 1 (B) 3 (C) 5 (D) 4
What do you think about this solution?
We value your feedback to improve our textbook solutions.