Chapter 1: Problem 42
$\lim _{x \rightarrow \infty} \frac{\cot ^{-1}(\sqrt{x-1}-\sqrt{x})}{\sec ^{-1}\left(\left(\frac{2 x+1}{x-1}\right)^{x}\right)}$ is equal to (A) (B) 0 (C) \(\frac{\pi}{2}\) (D) non-existent
Chapter 1: Problem 42
$\lim _{x \rightarrow \infty} \frac{\cot ^{-1}(\sqrt{x-1}-\sqrt{x})}{\sec ^{-1}\left(\left(\frac{2 x+1}{x-1}\right)^{x}\right)}$ is equal to (A) (B) 0 (C) \(\frac{\pi}{2}\) (D) non-existent
All the tools & learning materials you need for study success - in one app.
Get started for free$\lim _{n \rightarrow \infty}\left(\frac{n !}{(m n)^{n}}\right)^{1 / n}(m \in N)$ is equal to (A) \(1 / \mathrm{em}\) (B) \(\mathrm{m} / \mathrm{e}\) (C) em (D) \(\mathrm{e} / \mathrm{m}\)
Column-I (A) If \(\mathrm{f}(\mathrm{x})=|\mathrm{x}-\mathrm{a}|+|\mathrm{x}-10|+|\mathrm{x}-\mathrm{a}-10|\), where \(\mathrm{a} \in(0,10)\), then the minimum value of \(\mathrm{f}\) is (B) $\lim _{x \rightarrow 0} \frac{x(1-\cos 2 x)^{2}-a(\sin x-\tan x)^{2}}{\tan ^{5} x+a \sin ^{8} x}$ is equal to (C) $\lim _{n \rightarrow \infty} \frac{n^{a} \sin ^{2}(n !)}{n+1}, 00, a \neq 1$ is Column-II (P) 0 (Q) 1 (R) 4 (S) 10 (T) depends on a
The function(s) which have a limit as \(\mathrm{x} \rightarrow \infty\) (A) \(\frac{\sin x \pi}{x}\) (B) \(a \cos ^{2} x \pi+b \sin ^{2} x \pi\) (C) \(\mathrm{x} \sin \mathrm{x} \pi\) (D) \(\tan \mathrm{x} \pi\)
For which of the following functions, Approx \(\mathrm{f}(\mathrm{x})\) exists : (A) \(\underset{x \rightarrow 1}{\text { Approx }} \frac{x^{2}-1}{|x-1|}\) (B) Approx \(\frac{2\\{x\\}-4}{[x]-3}\) (C) $\underset{x \rightarrow 0}{\operatorname{Approx}} \frac{1}{2-2^{\frac{1}{x}}}$ (D) None of these
$\lim _{x \rightarrow \infty} x^{2}\left[\tan ^{-1} \frac{2 x^{2}+1}{x^{2}+2}-\tan ^{-1} 2\right]$ is (A) \(\frac{3}{5}\) (B) \(-\frac{3}{5}\) (C) \(\frac{5}{3}\) (D) \(-\frac{5}{3}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.