Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(\lim _{n \rightarrow \infty}\left(\sum_{r=1}^{m} r^{n}\right)^{1 / n}\) is equal to, \((n \in N)\) (A) \(\mathrm{m}\) (B) \(\mathrm{m} / 2\) (C) \(\mathrm{e}^{\mathrm{m}}\) (D) \(\mathrm{e}^{\mathrm{m} 2}\)

Short Answer

Expert verified
Answer: (A) m

Step by step solution

01

Write down the expression

We are given the expression: $$\lim _{n \rightarrow \infty}\left(\sum_{r=1}^{m} r^{n}\right)^{1 / n}$$ where \(m\) is a fixed natural number and we want to find the equivalent option for the limit.
02

Express the sum as a fraction of largest term

We know that as n goes to infinity, the largest term in the sum \(\sum_{r=1}^{m} r^{n}\) will dominate the sum. So let's express each term in the sum as a fraction of the largest term \(m^n\). We can rewrite the sum as: $$\sum_{r=1}^{m} r^{n} = m^n\sum_{r=1}^{m} \left(\frac{r}{m}\right)^n$$ Now, analyze the limit again: $$\lim_{n \rightarrow \infty} \left( m^n\sum_{r=1}^{m} \left(\frac{r}{m}\right)^n \right)^{1/n}$$
03

Apply limit laws

We can apply the limit laws and rewrite the limit as: $$\lim_{n \rightarrow \infty} \left( m^n\sum_{r=1}^{m} \left(\frac{r}{m}\right)^n \right)^{1/n} = m\lim_{n \rightarrow \infty} \left(\sum_{r=1}^{m} \left(\frac{r}{m}\right)^n\right)^{1/n}$$
04

Find the dominant term

Note that in the limit we are taking, all terms in the sum inside the brackets get smaller and smaller because all \(r<m\), except for the last term when \(r=m\), which remains 1. So, $$\lim_{n \rightarrow \infty} \left(\sum_{r=1}^{m} \left(\frac{r}{m}\right)^n\right)^{1/n} = \lim_{n \rightarrow \infty} \left(1 \right)^{1/n}$$
05

Evaluate the limit

The limit \(\lim_{n \rightarrow \infty} \left(1 \right)^{1/n}=1\) (since 1 raised to any power is always 1). We combine this with the result from Step 3: $$m\lim_{n \rightarrow \infty} \left(\sum_{r=1}^{m} \left(\frac{r}{m}\right)^n\right)^{1/n} = m(1)$$ So, the limit of the given expression is equal to \(m\), which corresponds to the option (A).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If \(\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-x+1}-a x-b\right)=0\), then for \(k \geq 2, k \in\) \(\mathrm{N}\) which of the following is/are correct ? (A) \(2 \mathrm{a}+\mathrm{b}=0\) (B) \(a+2 b=0\) (C) \(\lim _{n \rightarrow \infty} \sec ^{2 n}(k ! \pi b)=1\) (D) \(\lim _{n \rightarrow \infty} \sec ^{2 n}(k ! \pi a)=1\)

Given $l_{1}=\lim _{x \rightarrow \frac{\pi}{4}} \cos ^{-1}\left[\sec \left(x-\frac{\pi}{4}\right)\right]$; $l_{2}=\lim _{x \rightarrow \frac{\pi}{4}} \sin ^{-1}\left[\operatorname{cosec}\left(x+\frac{\pi}{4}\right)\right]$ $l_{3}=\lim _{x \rightarrow \frac{\pi}{4}} \tan ^{-1}\left[\cot \left(x+\frac{\pi}{4}\right)\right]$ $l_{4}=\lim _{x \rightarrow \frac{\pi}{4}} \cot ^{-1}\left[\tan \left(x-\frac{\pi}{4}\right)\right]$ where \([\mathrm{x}]\) denotes greatest integer function then which of the following limits exist (A) \(l_{1}\) (B) \(l_{2}\) (D) \(l_{4}\) (C) \(l_{3}\)

The function(s) which have a limit as \(\mathrm{n} \rightarrow \infty\) (A) \(\left(\frac{n-1}{n+1}\right)^{2}\) (B) \((-1)^{n}\left(\frac{n-1}{n+1}\right)^{2}\) (C) \(\frac{n^{2}+1}{n}\) (D) \((-1)^{n} \frac{n^{2}+1}{n}\)

If \(\mathrm{b}<0, \mathrm{~b} \neq-1\) and a is a positive constant then $\lim _{x \rightarrow-\infty} \frac{a+x}{|x|-\sqrt{b^{2} x^{2}+x}}$ equals (A) \(\frac{1}{|b|-1}\) (B) \(\frac{1}{-b-1}\) (C) \(\frac{1}{b-1}\) (D) \(\frac{1}{1-|\mathrm{b}|}\)

The value of $\left(\lim _{x \rightarrow 0}\left[\frac{100 x}{\sin x}\right]+\left[\frac{99 \sin x}{x}\right]\right)$ is (where [.] denotes greatest integer function) (A) 199 (B) 198 (C) 197 (D) None of these

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free