Chapter 1: Problem 37
\(\lim _{n \rightarrow \infty}\left(\sum_{r=1}^{m} r^{n}\right)^{1 / n}\) is equal to, \((n \in N)\) (A) \(\mathrm{m}\) (B) \(\mathrm{m} / 2\) (C) \(\mathrm{e}^{\mathrm{m}}\) (D) \(\mathrm{e}^{\mathrm{m} 2}\)
Chapter 1: Problem 37
\(\lim _{n \rightarrow \infty}\left(\sum_{r=1}^{m} r^{n}\right)^{1 / n}\) is equal to, \((n \in N)\) (A) \(\mathrm{m}\) (B) \(\mathrm{m} / 2\) (C) \(\mathrm{e}^{\mathrm{m}}\) (D) \(\mathrm{e}^{\mathrm{m} 2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-x+1}-a x-b\right)=0\), then for \(k \geq 2, k \in\) \(\mathrm{N}\) which of the following is/are correct ? (A) \(2 \mathrm{a}+\mathrm{b}=0\) (B) \(a+2 b=0\) (C) \(\lim _{n \rightarrow \infty} \sec ^{2 n}(k ! \pi b)=1\) (D) \(\lim _{n \rightarrow \infty} \sec ^{2 n}(k ! \pi a)=1\)
Given $l_{1}=\lim _{x \rightarrow \frac{\pi}{4}} \cos ^{-1}\left[\sec \left(x-\frac{\pi}{4}\right)\right]$; $l_{2}=\lim _{x \rightarrow \frac{\pi}{4}} \sin ^{-1}\left[\operatorname{cosec}\left(x+\frac{\pi}{4}\right)\right]$ $l_{3}=\lim _{x \rightarrow \frac{\pi}{4}} \tan ^{-1}\left[\cot \left(x+\frac{\pi}{4}\right)\right]$ $l_{4}=\lim _{x \rightarrow \frac{\pi}{4}} \cot ^{-1}\left[\tan \left(x-\frac{\pi}{4}\right)\right]$ where \([\mathrm{x}]\) denotes greatest integer function then which of the following limits exist (A) \(l_{1}\) (B) \(l_{2}\) (D) \(l_{4}\) (C) \(l_{3}\)
The function(s) which have a limit as \(\mathrm{n} \rightarrow \infty\) (A) \(\left(\frac{n-1}{n+1}\right)^{2}\) (B) \((-1)^{n}\left(\frac{n-1}{n+1}\right)^{2}\) (C) \(\frac{n^{2}+1}{n}\) (D) \((-1)^{n} \frac{n^{2}+1}{n}\)
If \(\mathrm{b}<0, \mathrm{~b} \neq-1\) and a is a positive constant then $\lim _{x \rightarrow-\infty} \frac{a+x}{|x|-\sqrt{b^{2} x^{2}+x}}$ equals (A) \(\frac{1}{|b|-1}\) (B) \(\frac{1}{-b-1}\) (C) \(\frac{1}{b-1}\) (D) \(\frac{1}{1-|\mathrm{b}|}\)
The value of $\left(\lim _{x \rightarrow 0}\left[\frac{100 x}{\sin x}\right]+\left[\frac{99 \sin x}{x}\right]\right)$ is (where [.] denotes greatest integer function) (A) 199 (B) 198 (C) 197 (D) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.