Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If \(\mathrm{b}<0, \mathrm{~b} \neq-1\) and a is a positive constant then $\lim _{x \rightarrow-\infty} \frac{a+x}{|x|-\sqrt{b^{2} x^{2}+x}}$ equals (A) \(\frac{1}{|b|-1}\) (B) \(\frac{1}{-b-1}\) (C) \(\frac{1}{b-1}\) (D) \(\frac{1}{1-|\mathrm{b}|}\)

Short Answer

Expert verified
Based on the step-by-step solution provided, determine the limit of the rational function as \(x\) approaches negative infinity. The limit of the function is \(\frac{1}{1- b}\), and the answer that matches this limit is: (D) \(\frac{1}{1-|b|}\).

Step by step solution

01

Manipulate the function

Let's rewrite the expression under limit. Divide numerator and denominator by \(|x|\): $$\frac{a+x}{|x|-\sqrt{b^{2} x^{2}+x}} = \frac{\frac{a}{|x|} + 1}{1 - \frac{\sqrt{b^{2} x^{2}+x}}{|x|}}$$
02

Take the limit

Now let's find \(\lim_{x\to-\infty} \frac{a+x}{|x|-\sqrt{b^{2} x^{2}+x}}\): $$\lim_{x\to-\infty} \frac{\frac{a}{|x|} + 1}{1 - \frac{\sqrt{b^{2} x^{2}+x}}{|x|}} = \frac{\lim_{x\to-\infty}(\frac{a}{|x|} + 1)}{\lim_{x\to-\infty}(1 - \frac{\sqrt{b^{2} x^{2}+x}}{|x|})}$$
03

Calculate the limits separately

We now need to find the limits in the numerator and the denominator separately: $$\lim_{x\to-\infty}\frac{a}{|x|} = 0$$ For \(x \to-\infty\), we have \(\sqrt{b^2x^2+x} \sim -bx\) and \(|x|\sim-x\). Thus, $$\lim_{x \rightarrow-\infty} \frac{\sqrt{b^{2} x^{2}+x}}{|x|} = \lim_{x \rightarrow-\infty} \frac{-bx}{-x} = b$$ Now let's find the limit of the whole expression: $$\lim_{x\to-\infty} \frac{\frac{a}{|x|} + 1}{1 - \frac{\sqrt{b^{2} x^{2}+x}}{|x|}} = \frac{0 + 1}{1 - b} = \frac{1}{1 - b}$$
04

Match the answer

Comparing the result \(\frac{1}{1 - b}\) with the given options, we find that the correct answer is: (D) \(\frac{1}{1-|b|}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The value of $\lim _{n \rightarrow \infty} \frac{1^{6}+2^{6}+3^{6} \ldots \ldots . n^{6}}{\left(1^{2}+2^{2}+3^{2} \ldots \ldots n^{2}\right)\left(1^{3}+2^{3}+3^{3}+\ldots \ldots . n^{3}\right)}$ (A) \(\frac{14}{7}\) (B) \(\frac{21}{8}\) (C) \(\frac{132}{17}\) (D) \(\frac{12}{7}\)

Assertion \((A):\) A circle \(C_{1}\) is inscribed in an equilateral triangle \(\mathrm{ABC}\) with side length \(2 .\) Then circle \(\mathrm{C}_{2}\) is inscribed tangent to BC, CA and circle \(\mathrm{C}_{1}\). An infinite sequence of such circles is constructed, each tangent to \(\mathrm{BC}, \mathrm{CA}\) and the previous circle. The sum of areas of all the infinitely many circles is \(\frac{5 \pi}{8}\). Reason ( \(\mathbf{R}\) ) : Radius of \(\mathrm{C}_{1}\) is \(\frac{1}{\sqrt{3}}\), that of \(\mathrm{C}_{2}\) is \(\frac{1}{3 \sqrt{3}}\) and radius of the remaining circle each shrink by a factor \(\frac{1}{3}\).

$\lim _{x \rightarrow 0} \frac{1-\cos x+2 \sin x-\sin ^{3} x-x^{2}+3 x^{4}}{\tan ^{3} x-6 \sin ^{2} x+x-5 x^{3}}$ equals (A) 1 (B) 2 (C) 3 (D) 4

$\lim _{x \rightarrow 0} \frac{\int_{\sqrt{x}}^{x^{2}} \tan ^{-1}\left(\frac{t^{2}}{1+t^{2}}\right) \text { dt }}{\sin 2 x}$ is equal to (A) 0 (B) 1 (C) \(1 / 2\) (D) does not exist

The true statement(s) is / are (A) If \(\lim _{x \rightarrow c} \mathrm{f}(\mathrm{x})=0\), then there must exist a number \(\mathrm{d}\) such that \(\mathrm{f}(\mathrm{d})<0.001\) (B) \(\lim _{x \rightarrow c} f(x)=L\), is equivalent to $\lim _{x \rightarrow c}(f(x)-L)=0$. (C) \(\lim _{x \rightarrow a}(f(x)+g(x))\) may exist even if the limits $\lim _{x \rightarrow i}$ \(\left(\mathrm{f}(\mathrm{x})\right.\) and $\lim _{\mathrm{x} \rightarrow \mathrm{a}}(\mathrm{g}(\mathrm{x})$ do not exist. (D) If \(\lim _{x \rightarrow a} f(x)\) exists and $\lim _{x \rightarrow a}(f(x)+g(x))$ does not exist, then \(\lim _{x \rightarrow a} g(x)\) does not exist.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free